搜索资源列表
IrisDC06
- 分类是数据挖掘 、机器学习 和模式识别 中一个重要的研究领域。分类的目的是学会一个分类模型 (称作分类器),该模型能把未知类别的数据项映射到给定类别中。目前发展较成熟的几种分类算法 如决策树、神经网络、贝叶斯方法、遗传算法等。分类具有广泛的应用,例如医学诊断、信用卡系统的信用分级、图像模式识别等。本毕业设计通过使用鸢尾属植物(IRIS)数据集,对当前数据挖掘中具有代表性的优秀分类算法进行分析和比较,总结出了各种算法的特性,为使用者选择算法或研究者改进算法提供了依据。-Classificatio
植物识别系统
- 通过对植物属性的描述,得到植物名称,可视化界面完美,可提供用户选择
plantsRecog
- 基于产生式的植物识别系统,Eclipse,界面采用JFrame设计,BorderLayout布局,遵循简单大方便于操作的原则-Plant identification system based on production, Eclipse, interface with JFrame design, the BorderLayout layout, easy to follow the principle of operation is simple and elegant
植物识别系统
- 根据特征进行植物种类的识别()
植物虫害检测(GUI,注释,svm算法)
- 植物虫害检测(GUI,注释,svm算法) 该课题为基于MATLAB SVM方法的植物病害检测系统,带GUI界面,可以识别多种被虫害侵蚀的植物叶子,输出结果。带论文和详细注释。 train 对黄瓜子文件夹所有图片提取 颜色矩特征和gabor纹理特征,然后svm训练 test 对测试图像灰度化,滤波,提取 颜色矩特征和gabor纹理特征,然后svm模型测试,输出类别 colorMom.m 颜色矩特征提取 Gabor_palm.m gabor纹理特征提取(Plant pe