搜索资源列表
基于DPT的非线性调频信号参数估计
- 将非线性调频(NLFM)信号建模为高阶多项式相位信号(PPS)模型, 采用由低阶离散多项式变换(DPT)到高阶DPT的逆向定阶方法确定模型阶数, 并在此基础上, 给出一种正弦调频信号(SFM)的DPT参数估计算法, 可以实现对载波频率、调制频率及调频系数的估计。该算法不受调频系数范围的限制, 核心环节为延时相关和FFT。
esprit.rar
- 用esprit算法估计复正弦加白噪声的信号频率,f给出正弦信号的频率估计值,Esprit algorithm with an estimated increase in complex white noise sinusoidal signal frequency, f the frequency of sinusoidal signal given the estimated value of
MVDR.rar
- 三个复正弦信号的信噪比分别为SNR1 =30dB, SNR2 =30dB和SNR3 = 27dB。假设信号样本数为1000,FIR 滤波器的抽头个数为4。基于奇异值分解的MVDR 方法进行信号频率估计的仿真实验,获得功率谱密度函数的估计。,A power spectrum estimation algorithm named mvdr is introduced in this program
FFT
- 利用FFT估计正弦信号的频率,要估计一个叠加了高斯白噪声的正弦信号 的频率 ,可以通过对x(n)做傅里叶变换,得到频谱图,找出幅度的最大值对应的频率值 ,进行多次变换,求出均方误差 。改变信噪比SNR,通过仿真可以得出随着信噪比增加,均方误差减小。-Sinusoidal signal using FFT frequency estimation, to estimate a Gaussian white noise superimposed on the frequency of sinusoi
MATLAB
- 对噪声信号中的正弦信号,通过Pisarenko谐波分解方法、Music算法和Esprit算法进行频率估计,信号源是: 其中, , , ; 是高斯白噪声,方差为 。使用128个数据样本进行估计。 1、用三种算法进行频率估计,独立运行20次,记录各个方法的估计值,计算均值和方差; 2、增加噪声功率,观察和分析各种方法的性能。-Sinusoidal signal in the noise signal through the Pisarenko harmonic decomposition metho
MUSIC
- 采用MUSIC方法的白噪声频率检测仿真 白噪声中单个正弦信号的频率检测与估计 白噪声中多个正弦信号的频率检测与估计 -MUSIC method using white noise white noise simulation of the frequency of detection of a single frequency sinusoidal signal detection and estimation of white noise in the frequency of
yizhongxongdezhededed
- 这是一位博士写的一种新的正弦信号频率估计方法,很有参考意义。-This is a Ph.D. to write a new method of sinusoidal frequency estimation, lot of reference value.
pisa
- 在计算机上产生一组实验数据,首先产生一段零均值白噪声数据u(n),令功率为 ,让u(n)通过一个三阶FIR: 得到y(n). .y(n)上加三个实正弦信号f1’=0.1,f2’=0.25,f3’=0.26调整 和正弦信号幅度信噪比大致为10dB,50dB,50dB. (1) 令N=256,描绘xn波形; (2)得出真实功率谱密度 . (3) 利用此实验数据Pisarenko谐波分解法估计该实验数据的正弦频率及幅度。-On the computer to generate a
yuping
- 分析了噪声背景下实谐波过程ARMA模型系数之间的对称性,并以此为约束条件加入ARMA谱估计方法的求解过程中,从而提出了一种改进的正弦信号频率估计方法.理论分析与计算机仿真表明,对于低信噪比条件下的正弦信号参量估计,这一算法的精度与稳定性都优于仅使用总体最小二乘法(SVD-TLS)的ARMA谱估计方法.-Analysis of real harmonic process noise background symmetry between ARMA model coefficients, and a
frequency-estimation-algorithm
- 一种新的复正弦信号二维频率估计算法一种新的复正弦信号二维频率估计算法-A new two-dimensional complex sinusoid frequency estimation algorithmA new two-dimensional complex sinusoid frequency estimation algorithm
enob_estimation_IpDFT
- 插值离散傅里叶变换用于正弦信号频率估计,以及在ADC有效位测试中的应用。-Interpolated discrete Fourier transform for sinusoidal frequency estimation, and the effective bits in the ADC test applications.
FFT-sinusoidal-signal-frequency-
- 插值快速傅里叶变换FFT估计正弦信号频率的精度分析-Interpolated fast Fourier transform FFT to estimate the accuracy of the sinusoidal signal frequency analysis
f_sin
- matlab编写的复正弦信号频率估计程序,分别计算Tretter方法、kay、lovell&williamson等方法-matlab write complex sinusoidal signal frequency estimation procedures were calculated the Tretter method, kay lovell & williamson other methods
MUSIC
- 负正弦加白噪声随机过程下使用MUSIC方法进行信号频率估计仿真,信号样本数去1000,估计的自相关矩阵为8阶,分别采用AIC和MDL准则估计信号源个数,并画出相应的MUSIC频率估计谱线。-Negative sine plus white noise random process method using MUSIC frequency estimation simulation, signal samples to 1000, the estimated autocorrelation mat
music
- 用music算法实现对一个正弦信号频率的估计-Realization of a sinusoidal signal frequency estimation algorithm with music
SDGJ
- 一种实时的正弦波频率估计的算法,四点估计法,应用四个点的采样值就能估算出正弦信号的频率,具有时效性-A real-time sine wave frequency estimation algorithm, four-point estimation method, the application of the four-point value can be estimated sampling frequency sinusoidal signal with timeliness
power-spectrum-estimation
- 分别使用MVDR、Root-Music和ESPRIT三种方法对信号频率估计进行仿真实验,其中噪声为复正弦加性白噪声,给出正弦信号频率的估计值。-Using MVDR, Root- Music and ESPRIT three methods to estimate the signal frequency simulation experiment respectively, which is suitable for complex sinusoidal additive white nois
Q
- Quinn 算法历程,通过这个算法可以对正弦信号频率进行精细估计-Quinn algorithm course, you can fine sinusoidal signal frequency estimation by this algorithm
ABv1v2
- AB算法历程,通过这个算法可以对正弦信号频率进行精细估计-AB algorithm course, you can fine sinusoidal signal frequency estimation by this algorithm
CAN
- CANDAN 算法历程,通过这个算法可以对正弦信号频率进行精细估计-Quinn algorithm course, you can fine sinusoidal signal frequency estimation by this algorithm