搜索资源列表
矩阵所有运算
- 矩阵的转置、行列式、秩,逆矩阵求法,矩阵的三角分解、qr分解,对称正定矩阵的乔里斯基分解及行列式值,奇异值分解,广义逆的奇异值分解,矩阵特征值与特征向量的各种计算方法-all kinds of computational method of transposition of matrix, determinant, rank, inverse of matrix,triangle decomposition, qr decomposition, cholesky decomposition an
qr
- 矩阵QR分解.数字分析的比较难的程序,值得一看 -matrix QR decomposition. Digital analysis of the more difficult procedures, eye-catcher
qr
- 矩阵QR分解的算法,使用openMP实现, 请在支持并行计算的机器上编译运行-Matrix QR decomposition algorithm, the use of openMP implementation, to support parallel computing in the compile and run on the machine
QR
- 带双步位移的QR分解法求解矩阵的特征值和特征向量-With two-step displacement of the QR decomposition method for solving matrix eigenvalue and eigenvector
UCA_SMI
- QR分解SMI算法的目的正是要避免直接来解线性方程,而是将自相关矩阵分解,并利用Givens旋转实现数据矩阵的QR分解,最终将权矢量的求解问题转化为三角线性方程组的求解问题。-QR decomposition SMI algorithm, whose objective it is to avoid directly to solution of linear equations, but will auto-correlation matrix decomposition, and the u
QR
- 矩阵全部特征值的QR方法,包括化一般矩阵为上Hessenberg阵,平面旋转阵(Givens变换阵),用 Givens变换对上Hessenberg阵作QR分解,原点平移加速的QR方法等-Eigenvalue matrix of all the QR methods, including the general of the Hessenberg matrix array, planar array rotation (Givens transformation matrix), with the
qr
- 可用于一般及特殊矩阵即奇异矩阵进行QR分解-Can be used for general and special matrix that is singular matrix QR decomposition
QR
- 对一般矩阵的矩阵QR分解,其中R是对角线元素全为非负实数的上三角矩阵,Q为正交矩阵-QR factorization
18-6
- 该代码为矩阵qr分解的并行算法,采用的是MPI编程方法-The code for the matrix qr decomposition parallel algorithms, using the MPI programming
QR
- 采用c++实现矩阵QR分解,基于householder变换-C++ implementation using QR decomposition of matrix, based on householder transformation
householderqr
- householder 矩阵 qr分解程序-householder matrix qr decomposition process
QR
- 矩阵QR分解实例,使用Givens和Householder两种方法-QR decomposition, using Givens and Househoulder method
QR
- 矩阵QR分解,采用householder方法。输入矩阵,返回分解参量,QR decomposition-QR decomposition
eigen-QR
- C++矩阵QR分解方法,同时求出对应的特征值和实特征值对应的特征向量-QR for solving the eigenvalues and eigenvectors
C++实现矩阵的所有运算
- 矩阵的转置、行列式、秩、逆矩阵求法,矩阵的三角分解、qr分解,对称正定矩阵的乔里斯基分解及行列式值,奇异值分解,广义逆的奇异值分解,矩阵特征值与特征向量等等各种计算方法。(Transpose, rank, determinant, inverse matrix method of matrix decomposition, triangular decomposition of QR matrix, symmetric positive definite matrix and the deter
SVD_C++
- C++实现矩阵的SVD分解,矩阵基本运算“+,-,*,/”,三角分解,QR分解,矩阵显示,矩阵转置,矩阵特征值与特征向量运算. 并在 Source.cpp中附有使用例子代码,方便读者快速上手。 经本人测试,完全可以运行,放心使用。 对于SVD分解,经过与matlab中结果对比,发现,当矩阵的列数>=行数时,基本没问题。(Using C++ language realizes the SVD decomposition of matrix,as well as the basic o
Desktop
- 计算矩阵QR分解,A=Q[R;O] 可用于求解线性方程组 并附带利用QR分解解决LSE和LS的程序(To work out the QR decompose of a matrix)
QRdecomposition
- QR 分解,包括householder 变换,用于矩阵分解,最小二乘法(QR decomosition including householder transform, you can use it to solve least square problem.)
QR
- 自动识别矩阵规模,进行QR分解运算,采用HouseHolder变换做成上Hessenberg矩阵,然后通过Givens变换做QR分解。(The size of the matrix is automatically identified, the QR decomposition operation is performed, the HouseHolder transform is used to make the upper Hessenberg matrix, and then the Q
QR分解求矩阵特征值特征向量 C语言
- QR分解计算矩阵特征值、特征向量的 C语言实现(QR decomposition to calculate matrix eigenvalues and eigenvectors by C language)