搜索资源列表
Class_Cover_PSO_FNN
- 基于类覆盖算法和粒子群优化的神经网络解决模式分类问题-algorithm based on the type coverage and PSO the neural network model to solve classification problems
class
- 这个是我自己编写的基于混沌自适应粒子群优化支持向量机用于分类的matlab程序,本程序以心脏病的诊断为例,得出了非常好的效果!主要贡献在于解决了支持向量机参数人为选取随意性大且效果好坏不稳定的难题!-This is what I have written based on adaptive chaotic particle swarm optimization of support vector machine for classification of matlab procedures, t
psoyouhuannyj
- 基于粒子群优化的神经网络训练算法研究论文 摘 要: 本文提出了基于连接结构优化的粒子群优化算法(SPSO) 用于神经网络训练,该算法在训练神经网络权 值的同时优化其连接结构,删除冗余连接,使神经网络获得与模式分类问题匹配的信息处理能力. 经SPSO 训练的神经 网络应用于Iris ,Ionosphere 以及Breast cancer 模式分类问题,能够部分消除冗余分类参数及冗余连接结构对分类性能 的影响. 与BP 算法及遗传算法比较,该算法在提高分类误差精度的同时可加快训
OPS
- 多阈值图像分类的粒子群优化算法,采用自然方法来提高优化速度和计算量-Multi-threshold image classification of the particle swarm optimization algorithm, using natural methods to improve the optimization speed and computation
psoRBF
- 粒子群优化算法优化RBF神经网络程序,可用在模式分类等方面-Particle swarm optimization algorithm optimization RBF neural network program can be used in pattern classification, etc.
RBFNeuralNetwork
- RBF神经网络优化的粒子群优化的预测文献,可以-RBF Neural Network Optimized by Particle Swarm Optimization for Forecasting
lssvmMATLAB
- 本程序使用支持向量机法和粒子群算法,实现对数据的分类-This program uses support vector machine method and particle swarm optimization, to achieve the classification of data
Particle-Swarm-Optimization-classify
- 按照粒子群算法以及最近邻法则对全体样品进行分类-In accordance with Particle Swarm Optimization method to classify the samples of the whole
psoSVMcgForClass
- 关于粒子群算法对已SVM分类问题的参数寻优方法,可以参考-Particle swarm algorithm about the parameters of the classification problem has SVM optimization method, can reference
psoSVMcgForRegress
- 利用粒子群算法对支持向量机(SVM)进行分类优化-optimizate the support vector machine (SVM) classification
test
- 引入能直接处理连续型数据的邻域粗糙集约简模型,给出一种基于邻域粗糙集模型和粒子群优化的特征选择算法。仿真实验结果表明该算法可以选择较少的特征,改善分类的能力。-employs the neighborhood rough set reduction model which can process the numerical features directly without discretization. Then the particle fitness function in particl
psoLSSVMcgForClass
- 对于分类问题,matlab平台下的基于粒子群算法有关LSSVM参数寻优的程序。-For classification problems, the MATLAB platform based on particle swarm algorithm for LSSVM parameters optimization procedure.
基于alopex的粒子群算法
- 该算法通过基于Alopex的粒子群优化算法,结合神经网络计算,恰当地对所给数据进行聚类并进行拟合,从何达到了很好的分类和优化效果(Based on the Alopex particle swarm optimization algorithm and neural network calculation, the algorithm can properly cluster and fit the data, which can achieve a good classification an
psoSVMcgForClass
- 用粒子群寻优SVM,从而实现对分类器的参数实现寻优(pso svmcg for class,abcpso)
matlab代码
- 该代码是基于粒子群算法优化的支持向量机,适用于分类问题(The code is based on particle swarm optimization support vector machine, suitable for classification problem.)
nichingparticle-swarm-optimization
- 粒子群优化算起源于对鸟群、鱼群以及对某些社会行为的模拟,是一种基于群体智能的进化计算技术。而小生境技术则起源于遗传算法,这种方法能使基于群体的随机优化算法形成物种,从而使相应的优化算法具有发现多个最优解的能力。而多分类器集成技术则是通过多个分类器进行某种组合来决定最终的分类,以取得比单个分类器更好的性能。多分类器集成技术要求基元分类器不仅个体性能要好并且其差异度要大,这与小生境技术形成物种的能力具有很多内在的相似性。目前己经有研究者将小生境技术应用于多分类器集成,但由于传统的小生境技术仍然不完善
基于粒子群优化的k均值
- 基于粒子群优化的k均值,可以对实验对象进行定性分类(Based on the k-means of particle swarm optimization, the experimental objects can be qualitatively classified)
BPSO
- 二元粒子群优化(BPSO)用于特征选择任务,可以选择潜在特征,提高分类精度。(binary particle swarm optimization (BPSO) for feature selection tasks, which can select the potential features to improve the classification accuracy.)
基于粒子群优化算法的特征选择SVM分类
- 针对“BreastCancer”数据集,作为对比,第一次对特征集直接进行SVM分类,第二次使用粒子群算法进行特征选择后再进行SVM分类。并且对比和分析了两次分类的结果。(For "BreastCancer" data set, as a comparison, the first time the feature set is directly classified by SVM, and the second time the feature set is selected
GA & PSO+BP
- 遗传算法与粒子群算法优化BP,有较好的分类效果(BP optimization based on Genetic Algorithm and particle swarm optimization)