搜索资源列表
PCA-based_Similarity_Measurefor_Multivariate_Time_
- 2004 A PCA-based Similarity Measure for Multivariate Time Series.pdf 流行学习
AnimprovedBayesianfacerecognitionalgorithm
- 对人脸识别的贝叶斯方法ML中相似度计算公式进行了简化,对数据集的训练和人脸图像的预处理进 行了修改,提出了一种改进的贝叶斯人脸识另1】算法SML。在FERET人脸图像库的子集和南大人脸图像实验库上对 识别算法进行了测试和比较。实验表明,SML算法提高了ML算法的效率,克服了ML算法计算效率不高的缺陷,而 且SML的识别效率明显高于PCA方法。-Bayesian face recognition method on the ML in the similarity formula ha
ComputeEigenfaces
- svd提取特征脸,Computer Vision课程作业,用PCA计算特征脸,提取主成分,用PCA系数进行相似度计算。-comupute face similarity using eigenface and PCA analysis
Copy-Detection
- 使用下采样帧构成的列向量的PCA系数作为每帧特征(原则上,也可以使用其他类型的关键帧特征),多帧特征构成特征矢量,以高斯概率模型的后验概率衡量相似性、并建立k维树结构的索引进行搜索,文中对噪声、模糊、再压缩、加Logo,及其这些变换的两两组合进行了实验(丢帧很少时也可以),速度很快,适合于大规模因特网视频的搜索。-Use sampling frame column vector of the PCA coefficients as each frame features (in principl
Mode_similarity
- 按照模式相似性测度算法计算待测样品与样品库中的样品相似度,包括模块匹配法、基于PCA的模块匹配法、基于类中心的欧氏距离法和马氏距离法-Similarity measure in accordance with the mode algorithm to calculate the sample similarity in the sample and sample libraries , including the module matching method based on PCA modu
PCA-Classification.net
- 采用pca的方法,对样本进行分类。在实际中pca算法一般用于检测样本的相似度-Using pca method to classify the samples. In practice pca algorithm is generally used to detect the similarity of samples
EnglishChuLi
- 利用python编写的文本预处理的程序,包含了每一步的实现代码,分为删除标点符号、删除停用词、相似度计算、PCA降维、聚类以及可视化等,运行环境为pytharm,python3开发环境(The text preprocessing program written by Python contains every step of implementation code, which is divided into delete punctuation marks, delete stop word