当前位置:
首页
资源下载

搜索资源 - classifier data set
搜索资源列表
-
1下载:
云分类器,一种基于云模型理论的分类程序。程序中使用云分类器对Iris数据集进行了测试-cloud classifier, a theoretical model based on cloud classification procedure. Procedures used for cloud classification of Iris data set for testing
-
-
0下载:
Bayes分类器应用于IRIS数据集的例子-An example of Bayes Classifier applied on IRIS Data Set
-
-
0下载:
Bayes分类器——算法设计
1. 使用决策树(Decision tree)分类算法、朴素贝叶斯(Naï ve Bayes)算法或者K-近邻(kNN)算法(三者任选其一)对给定的训练数据集构造分类器,并在测试数据集上进行分类预测。
2. 数据集描述:
Tic-tac-toe游戏的二叉分类。Tic-tac-toe游戏示例如下-Bayes classifier- Algorithm 1. Using the decision tree (Decision tree) classi
-
-
0下载:
Fisher线性判别分类器应用于IRIS数据集的例子-An example of Fisher linear discriminant Classifier applied on IRIS Data Set
-
-
0下载:
一个比较简单的模式识别问题。用female.txt 和male.txt 的数据作为训练样本集,建立Bayes 分类器,用测试样本数据set1.txt、set2.txt、set3.txt 对该分类器进行测试,分别应用单个特征及两个特征进行实验-A relatively simple pattern recognition problem. Female.txt and male.txt use data as a training sample set, the establishment of
-
-
0下载:
:将K—means算法引入到朴素贝叶斯分类研究中,提出一种基于K—means的朴素贝叶斯分类算法。首先用K—
me.arks算法对原始数据集中的完整数据子集进行聚类,计算缺失数据子集中的每条记录与 个簇重心之间的相似度,把记
录赋给距离最近的一个簇,并用该簇相应的属性均值来填充记录的缺失值,然后用朴素贝叶斯分类算法对处理后的数据
集进行分类。实验结果表明,与朴素贝叶斯相比,基于K—means思想的朴素贝叶斯算法具有较高的分类准确率。-: K-means algorithm will
-
-
0下载:
Matlab source for blind classification of EEG data (BCI competition II data set IV)
-
-
0下载:
Neural Network Based Clustering
using Self Organizing Map (SOM) in Excel
Here is a small tool in Excel using which you can find clusters in your data set. The tool uses Self Organizing Maps (SOM) - originally proposed by T.Kohonen as the metho
-
-
0下载:
以黎曼几何为理论依据,基于S.Amari的修正核函数思想提出了两种新的保角变换,用其对核函数进行数据依赖性改进,进一步提高支持向量机分类器泛化能力。以人工非线性分类问题
为对象进行研究,仿真实验结果表明采用新保角映射可以快速显著地改善分类器泛化性能,而且能大幅度地减少支持向量的数目。-Two novel conformal transformations were proposed based on the Riemannian geometry theory and S.Amari’sid
-
-
0下载:
We propose an algorithm for facial expression recognition which can classify the given image into one of the seven basic facial expression categories (happiness, sadness, fear, surprise, anger, disgust and neutral). PCA is used for dimensionality red
-
-
1下载:
根据贝叶斯原理设计的一个简单的分类器,利用已知样本数据训练后,分类器就可以对未知样本进行分类。(实验时采用的是Iris数据集。)-According to the design of a simple Bayesian classifier, using the known training sample data, the classifier can classify the unknown samples. (Experiments using the Iris data set.)
-
-
0下载:
this a program that combine knn classifier with PCA to classify vehicle data set.-this is a program that combine knn classifier with PCA to classify vehicle data set.
-
-
0下载:
Iris数据集的分类程序,包括线性分类器实验,BP网络分类器实验,以及异或数据的BP网络分类实验,外带试验报告-Iris data set of classification procedures, including linear classification experiment, BP network classifier experiments, and different BP networks or data classification experiment, take-test
-
-
0下载:
a good algorithm for classification performance improvement (use PCA and LDA respectively and then implement the resulted data set into your classifier)
-
-
0下载:
基于贝叶斯的分类器设计.用“cancer.mat”的数据作为训练样本集,建立Bayes分类器,用测试样本数据对该分类器进行测试,从而加深对所学内容的理解和感性认识。-Based on the Bayes classifier. ' Cancer.mat data as the training sample set, the establishment of the Bayes classifier, the classifier is tested with the test sampl
-
-
0下载:
ANNbp对UCI中鸢尾花数据集分类,150做训练样本,剩下150做测试样本-ANNbp on the UCI iris data set classification, 150 training samples, the remaining 150 test samples
-
-
0下载:
根据RBM深度网络(Hinton,2006)进行MINST手写文字的分类器的训练,利用训练得到的权值制作了这个小程序,通过这个程序可以看出训练结果对数据集内的测试样本和训练样本都能进行很好的识别,但是对其他的手写字体识别就没有那么好了。-According to RBM depth network (Hinton, 2006) conducted MINST handwritten text classifier training, using the training to get the r
-
-
0下载:
design and implement a classifier for two-class classifi cation problems by naive kernel-based nonlinear method (NKNM) and Afast kernel-based nonlinear method (FKNM).(data set : Fsolar)
-
-
0下载:
用matlab编程实现随机球覆盖集成分类器算法,首先在UCI数据集上得到很好的结果,然后在6个基因表达数据集通过一个案例说明。-Implement random ball cover integrated classifier algorithm using matlab programming, first get good results on UCI data set, and then in six gene expression data sets through a case des
-
-
0下载:
CLASSIFICATION ALGORITHM FOR HYPER DATA SET
-