当前位置:
首页
资源下载

搜索资源 - cross validation neural matlab
搜索资源列表
-
0下载:
神经网络训练,应用matlab7NN包,用一个隐藏层使用5折交叉验证。-Training the Neural Network
This scr ipt is something that I did for a course at Uni. It uses the Neural Networking package provided with MatLab 7 unfortunately I m not sure if it s available with the earlier ve
-
-
0下载:
estimate the test accuracy,training accuray and validation accuracy of a neural network with 10-fold cross validation.-estimate the test accuracy,training accuray and validation accuracy of a neural network with 10-fold cross validation.
-
-
0下载:
The code implements a probabilstic Neuraol network for classification problems trained with a Leave One Out Cross Validation Scheme in Matlab (version 7 or above). The following toolboxes are required: statidtics, optimization and neural networks.
-
-
0下载:
matlab交叉验证cross Validation,把样本集分为训练集和测试集,防止网络出现过拟合,提高网络的泛化能力和预测精度-cross Validation for matlab,to estimate the test accuracy,training accuray and validation accuracy of a neural network
-
-
1下载:
一个matlab写的bp人工神经网络程序,参数优化采用交叉验证办法-Write a matlab bp artificial neural network program, parameter optimization using cross-validation method
-
-
0下载:
Grnn神经网络交叉验证,matlab中可实现代码文档-Grnn nerve network cross-validation, matlab in the can be to achieve the code documentation
-
-
0下载:
LS-SVM Leave-One-Out Cross-Validation Demo
G. C. Cawley, "Leave-one-out cross-validation based model selection criteria for weighted LS-SVMs", Proceedings of the International Joint Conference on Neural Networks (IJCNN-2006), pages 1661-1668, Vanco
-
-
0下载:
神经网络实例文件说明:
1. chapter26_lvq.m为主程序,将该文件夹设置为MATLAB当前工作路径,运行即可。
2. crossvalidation_lvq.mat为增加了交叉验证功能(确定最佳的隐含层神经元个数)的LVQ程序。
3. chapter26_bp.m为对比的BP程序。
4. data.mat为数据文件。
5. 该程序在MATLAB2009a版本下测试通过,个别函数在低版本中不存在或者调用格式有所不同,参照对应版本中的帮助
-
-
1下载:
matlab进行十折交叉验证神经网络,用于预测(Matlab performs ten fold cross validation using neural networks)
-
-
0下载:
SVM Light工具箱 Matlab接口,已经编译好,可直接用(SVMlight, by Joachims, is one of the most widely used SVM classification and regression package. It has a fast optimization algorithm, can be applied to very large datasets, and has a very efficient implementation of
-
-
7下载:
SURROGATES工具箱是一个多维函数逼近和优化方法的通用MATLAB库。当前版本包括以下功能:
实验设计:中心复合设计,全因子设计,拉丁超立方体设计,D-optimal和maxmin设计。
代理:克里金法,多项式响应面,径向基神经网络和支持向量回归。
错误和交叉验证的分析:留一法和k折交叉验证,以及经典的错误分析(确定系数,标准误差;均方根误差等;)。
基于代理的优化:高效的全局优化(EGO)算法。
其他能力:通过安全裕度进行全局敏感性分析和保守替代。(SURROGATES Toolbox
-