搜索资源列表
lwpr.rar
- 局部线性回归方法及其稳健形式已经被看作一种有效的非参数光滑方法.与流行的核回归方法相比,它有诸多优点,诸如:较高的渐近效率和较强的适应设计能力.另外,局部线性回归能适应几乎所有的回归设计情形却不需要任何边界修正。,Local linear regression methods and their solid form has been seen as an effective non-parametric smoothing method. Contrary to popular kernel
heguji
- 非参数统计学中非参数回归的简单应用核回归程序,应用范围广泛,不需要知道样本的分布就可以使用该方法。-Non-parametric statistical regression Nonparametric kernel regression of the simple application procedure, a wide range of applications, does not need to know the distribution of the samples you can u
4
- MATLAB程序, 半参数线性回归模型的最小二乘核估计 半参数线性回归模型的最小二乘正交序列估计。-MATLAB program, semi-parametric linear regression model of least squares kernel estimation Semiparametric least squares linear regression model orthogonal sequence estimation.
svm_perf
- SVMstruct is a Support Vector Machine (SVM) algorithm for predicting multivariate or structured outputs. It performs supervised learning by approximating a mapping h: X --> Y using labeled training examples (x1,y1), ..., (xn,yn). Unlike reg
LWLR
- this program compare the Locally Weighted Linear Regression with three diferrent kernel function (gaussian, logistic basis, and Reciprocal Multiquadric) also compare locally weighted by simple Linear Regression.
Kernel Based Deblurring ToolBox ver
- 运用核回归方法去模糊的经典程序,效果很好,有参考文献-using kernel regression for image deblurring,it s very effective
Inertiadevicefaultpredictionbasedonwavelet
- :为了提高最小二乘支持向量回归机的性能,将Morlet小波核函数引入其中,形成了最小二乘小波支 持向量回归机模型。利用待优化的参数重构模型的目标函数和约束条件,并在此基础上通过遗传算法进行参数 选择,从而提高了该模型的泛化能力。将最小二乘小波支持向量回归机应用于导弹陀螺仪的漂移趋势预测,仿真 实验结果表明了该方法的有效性和可行性,因此可以为陀螺仪的故障预报、可靠性辅助决策提供依据。-To improve the ability of least square support vect
SVregression
- In kernel ridge regression we have seen the final solution was not sparse in the variables ® . We will now formulate a regression method that is sparse, i.e. it has the concept of support vectors that determine the solution. The thing to not
processing
- 基于结构张量的核回归非均匀插值算法及其在图像处理中的应用-Structure tensor based on non-uniform interpolation kernel regression algorithm and its application in image processing
kernelbasedmoothing
- 基于核函数回归方法的图像去噪,图像平滑。对于图像领域的研究者有很大作用-Kernel regression method based on image denoising, image smoothing. Researchers in the field for the image plays a significant role
emd2_regression
- 基于核回归的图像散乱点插值,用于BEMD分解-scattered data interpolation based on kernel regression
UCseal_HorizontalShift_simulation
- Kernel Regression Based ImageProcessing ToolBox 图像去模糊
KerSmooth_NW
- Kernel regression using kernel functions
kernel-regerrsion-denoise-Examples
- 用核回归方法实现图像去噪是目前理论上最先进的图像去噪方法,这里提供的是图像去噪的matlab代码。-Kernel regression method with denoising is theoretically the most advanced image denoising method, here is the matlab code for image denoising.
STKernelRegressionSoftware4MATLAB
- 三维核回归视频时空超分辨率重建代码(matlab)说明-3 d video kernel regression space-time super-resolution reconstruction code (matlab) instructions
kernel-regression
- 主要讲述有关核回归的内容,非常经典,很具有参考价值,对大家了解这一方面或者做研究很有帮助,希望对大家有帮助-Focuses on kernel regression, very classic, very valuable reference for all of us to understand this aspect or helpful in doing research, we hope to help
MVC_VideoPlayer.10132012
- Kernel regression image processing code ported to C++ source code with QT and OpenCV libraries - work in progre-Kernel regression image processing code ported to C++ source code with QT and OpenCV libraries - work in progress
ImageProcessingToolBox
- 一个基于核回归的图像处理工具包,包含相关算法及测试数据等-A kernel regression-based image processing toolkit, including algorithms and test data, etc.
Kernel-Regression-for-Image-Processing
- In this paper, we make contact with the field of nonparametric statistics and present a development and generalization of tools and results for use in image processing and reconstruction. In particular, we adapt and expand kernel regression ide
kernel-regression-master
- kernel方法,进行半监督学习,数据分类与识别,有标签与无标签(KERNELmethod,semi-supervised learning,classification,label unlabel)