当前位置:
首页
资源下载

搜索资源 - multi objective Knapsack Problem
搜索资源列表
-
0下载:
遗传算法
遗传算法简称GA(Genetic Algorithm),在本质上是一种不依赖具体问题的直接搜索方法。遗传算法在模式识别、神经网络、图像处理、机器学习、工业优化控制、自适应控制、生物科学、社会科学等方面都得到应用。在人工智能研究中,现在人们认为“遗传算法、自适应系统、细胞自动机、混沌理论与人工智能一样,都是对今后十年的计算技术有重大影响的关键技术”。-Referred to as genetic algorithm genetic algorithm GA (Genetic Algo
-
-
1下载:
Genetic Algorithm for multi objective knapsack problem
-
-
0下载:
-
-
0下载:
基于多目标的PSO用于解决背包问题的程序,运行上比较花时间,请耐心等待。-Procedures used to solve the knapsack problem based on multi-objective PSO run more to spend time, please be patient.
-
-
0下载:
基于粒子群算法的多目标搜索算法,主要解决背包问题,直接运行即可
-Multi-objective particle swarm optimization-based search algorithm, mainly to solve the knapsack problem, can be run directly
-
-
0下载:
采用基于粒子群的多目标优化算法解决背包问题。-Using multi-objective particle swarm optimization algorithm to solve knapsack problem.
-
-
0下载:
遗传算法用于求解多目标背包问题,学包括基本的选择、杂交、变异等遗传算子.-Genetic algorithm for solving multi-objective knapsack problem, learning the basic choice, hybridization, mutation and other genetic operators.
-
-
0下载:
基于粒子群算法的多目标搜索算法,本案例采用多目标粒子群算法求解多目标背包问题。-Multiple target search algorithm based on particle swarm optimization (pso) algorithm, this case USES the multi-objective particle swarm optimization (pso) algorithm to solve multi-objective knapsack problem.
-
-
0下载:
采用多目标粒子群算法求解多目标背包问题 问题:假设存在五类物品,每类物品又包含四种具体物品,要求从五类物品中分别选择一种放入背包,使得背包总价值最大,总体积最小,总质量不超过92kg(The problem is solved by multi objective particle swarm optimization algorithm, multi-objective knapsack problem: suppose there are five categories of goods,
-
-
1下载:
多目标优化问题与粒子群算法的结合,以解决0-1背包问题(The multi-objective optimization problem is combined with particle swarm optimization to solve the 0-1 knapsack problem)
-