搜索资源列表
NQueens
- 这是一个八皇后问题的扩展,使用java实现,扩展到了多皇后,只要你输入皇后的个数,能给出所有的解。-This is an expansion of 8 Queen
N-Queens
- N-Queen solver written in java with excellent Graphical user interface.
NQueensBacktracking.java
- 解决n-queens using blind search-solving n-queens using blind search
NQueen
- n皇后问题可以表示成n-元组(x1,…,xn),其中xi是放在第i行的皇后所在的列号。于是,解空间由nn个n-元组组成。 显示约束条件为Si={1,2,…….,n},1 i n。 隐式约束条件之一为没有两个xi相同(即任意两个皇后不在同一列上)。将其加入到显式条件中,于是解空间的大小由nn个元组减少到n!个元组。 -n queens problem can be expressed as n-tuple (x1, ..., xn), where xi i
Queens-java.tar
- A recursive implementation to solve the n-queens problem, in Java.
NQueenrecursion
- N皇后的递归算法。使用java语言编写。可以在计算机上实现-N Queens of the recursive algorithm. Using java language. Can be implemented on a computer
nqueensja
- n queens problem solved in java
queens
- 用回溯法实现N后问题,使用的是JAVA开发环境的说。-Backward Method N
EightQueen_java
- (This is Java version) The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so was originally proposed in 1848 by the chess player Max Bezzel, and over the years, many mathematicians, including Gauss, have wo
NQueens
- 算法系列-N皇后问题的解决,用java语言来编写-Algorithms Series-N queens problem solve, to write java language
Queen
- 算法分析与设计 用回溯法实现n皇后问题(java源码)-Algorithm Analysis and Design N-queens Problem Using Backtracking
N--java-
- 利用递归机制,可以很容易的求解n皇后问题。针对八皇后,总共有92种解。下面将给出N-皇后问题的一般求解代码,在这里代码是使用java编码的。-Recursive mechanism that can easily solve the n-queens problem. For eight queens, a total of 92 kinds of solutions. The following will give a general N-queens problem solving code
Queen
- 用java语言,基于回溯法实现N皇后的位置放置方案,程序可以通过参数来设置要解决几个皇后的放置,默认是4个。(Using java language, backtracking method is used to implement the placement plan of N queens. The program can be set by parameters to solve the placement of several queens, and the default is 4.)