当前位置:
首页
资源下载

搜索资源 - neural network approximate
搜索资源列表
-
1下载:
BP神经网络Simulink模型。。例子给了个离散传递函数。训练后的网络可以逼近任意传递函数,或者非线性函数。-Simulink model of BP neural network. . Examples for the discrete transfer function. Trained network can approximate any transfer function, or the nonlinear function.
-
-
1下载:
这是一个径向基函数神经网络,通过RBF网络的学习算法来逼近一个二维函数,并利用LMS算法来进行权值调整。-This is a radial basis function neural network, RBF network learning algorithm adopted to approximate a two-dimensional function, and use of LMS algorithm for weight adjustment.
-
-
0下载:
实验使用BP神经网络来逼近一个较复杂的正弦函数,并观察BP神经网络的各个参数对BP神经网络的影响.-Experimental use of BP neural network to approximate a more complex sine function, and to observe the parameters of BP neural network on the impact of BP neural network.
-
-
0下载:
用bp神经网络的进行函数逼近,达到逼近的效果-Bp neural network used for function approximation to approximate the effects of
-
-
0下载:
如何构造神经网络,及构造一个三层前馈神经网络,来逼近非线性函数-How to construct a neural network, and construct a three-layer feedforward neural network to approximate nonlinear functions
-
-
0下载:
BP算法例子:用一个五层的神经网络去逼近函数f(x1,x2)=pow(x1-1,4)+2*pow(x2,2)-BP algorithm is an example: with a five-layer neural network to approximate the function f (x1, x2) = pow (x1-1, 4)+2* pow (x2, 2)
-
-
0下载:
利用神经网络中BP神经网络来拟合要逼近函数的程序。使用BP算法。-The use of neural network to fit the BP neural network to approximate the function procedure. The use of BP algorithm.
-
-
0下载:
用bp人工神经网络来逼近非线性函数-With bp artificial neural network to approximate nonlinear functions. . . . . .
-
-
1下载:
基于BP神经网络算法的函数逼近,利用matlab实现BP算法逼近任意非线性函数-BP neural network algorithm based on function approximation, using matlab to achieve BP algorithm approximate any nonlinear function
-
-
1下载:
介绍如何通过matlab使用bp神经网络和rbf神经网络来逼近非线性函数-Describes how to use matlab bp neural network and rbf neural networks to approximate nonlinear functions
-
-
0下载:
BP神经外那个罗可以逼近任意函数,此为拟合函数的源代码-BP neural network can approximate any function, the source code for the fitting function
-
-
0下载:
RBF神经网络的源程序 遗传RBF网络 RBF神经网络对非线性系统进行逼近-RBF neural network of the source of genetic RBF neural network RBF network to approximate the nonlinear system
-
-
0下载:
人工神经网络(Artificial Neural Network)是从生理角度对智能的模拟,具有极
高的学习能力和自适应能力,能够以任意精度逼近任意函数,完成对系统的仿真;
而遗传算法是对自然界生物进化过程的模拟,具有极强的全局寻优能力,这两种
算法都是当下研究较多的智能方法。将这两种方法与常规的 PID 控制相结合,
构成智能 PID 控制器,使其具有参数自整定、自适应的能力,以适应复杂环境
下的控制要求,这一思路对提高控制效果具有很好的现实意义。
-Artificia
-
-
2下载:
MATLAB语言作为编程工具构造CMAC神经网络,利用公式Wij(k+1)=Wij(k)+β(yid-yi)α/αTα对连接权系数Wij进行调整,用来对正弦函数sin(x)进行逼近-MATLAB programming language as a tool to construct CMAC neural network, using the formula Wij (k+1) = Wij (k)+ β (yid-yi) α/αTα the connection weights Wij to a
-
-
1下载:
使用分段逼近(piecewise approximation)算法计算超越函数,以神经网络中最常用的双曲正切型(tanh)传输函数为例来分析逼近精度同分段数、有限字长之间的关系。
-Using segmented approximation (piecewise approximation) algorithm for computing transcendental functions, to the most commonly used neural network type hyper
-
-
0下载:
用人工神经元网络训练输入来逼近已知非线性函数。-To approximate the known nonlinear function with the Artificial Neural Network
-
-
0下载:
BP神经网络预测模型的非线性逼近功能很好,能够成功的预测复杂的数据结构-The BP neural network model of nonlinear approximate function is very good, can successfully predict complex data structure
-
-
0下载:
用前向神经元网络逼近连续函数,f(x1,x2,x3,x4)=sinx1+sinx2+sinx3+sinx4 定义域为[0,2*pi].刘宝碇老师例子仅供参考-Let us design a feedforward NN to approximate the continuous
function,
f(x1, x2, x3, x4) = sin x1+ sin x2+ sin x3+ sin x4
defined on [0, 2*pi]4.
-
-
0下载:
产生3000个训练数据,训练一个前向神经元网络对f(x)进行逼近。刘宝碇不确定规划及应用 神经元网络 例3.2-We generate 3000 training data for the function f(x). Then we train a
feedforward NN to approximate the function。 neural networks example 3.2
-
-
1下载:
1.elman神经网络对输入波形进行检测
2.设计具有3个神经元的Hopfield网络
3.建立自适应神经模糊推理系统对非线性函数进行逼近(正弦加滞后)
4.建立自适应神经模糊推理系统对非线性函数进行逼近(正弦多项式)
5.利用模糊C均值聚类方法将一类随机给定的三维数据分为三类(1.Detection of input waveform by elman neural network
2. design a Hopfield network with 3 neurons
3. est
-