当前位置:
首页
资源下载

搜索资源 - nonlinear Gauss-Seidel
搜索资源列表
-
0下载:
用途:利用二分法快速求解非线性方程f(x) = 0;
用向量形式(普通存储格式)的Gauss-Seidel迭代解线性方程组Ax=b;Newton迭代法解非线性方程f(x) = 0;用分量形式的SOR迭代解线性方程组Ax=b;用向量(稀疏存储)形式的Gauss-Seidel迭代解线性方程组Ax=b
-Purposes: the use of dichotomy quickly solving nonlinear equations f (x) = 0 with vector form o
-
-
0下载:
Gauss-Seidel iteration with relaxation (nonlinear equations)
-
-
0下载:
CO is an applications module written in the GAUSS programming language. It solves the Nonlinear Programming problem, subject to general constraints on the parameters - linear or nonlinear, equality or inequality, using the Sequential Quadratic Progra
-
-
0下载:
Gauss-seidel解非线性方程的c++编程-Gauss-seidel for solving nonlinear equations of the c++ programming
-
-
0下载:
高斯赛德尔算法 一种非线性代数方程组的迭代解法-High Sisaideer a nonlinear algebraic equation algorithm Iterative Solution
-
-
0下载:
包括:
列主元Gauss消去法解线性方程组;
矩阵的LDLT和Cholesky分解;
追赶法解三对角方程组;
Jacobi和Gauss-Seidel方法解方程组;
Newton插值多项式和三次样条插值多项式;
复化Simpson公式求解定积分;
Romberg方法求解定积分;
二分法和割线法求非线性方程的解。-Include:
Main-element Gauss elimination method for solving linear equations
-
-
0下载:
利用VC++6.0进行高斯-赛德尔(Gauss-Siedel)迭代法进行齐次非线性方程组的计算,对于初学C++的人来说,本程序十分有用。方程的系数在程序中定义。-To use VC++6.0 Gauss- Seidel iterative method (Gauss-Siedel) homogeneous nonlinear equations calculated, the program is useful for beginners C++ people. The coefficients
-
-
0下载:
高斯-赛德尔法;英文名称:Gauss-Seidelmethod;一种非线性代数方程组的迭代解法。-Gauss- Seidel method Chemical Name: Gauss-Seidelmethod kind of nonlinear algebraic equations of the iterative solution.
-
-
0下载:
这是利用Gauss-Seidel迭代方法求解线性/非线性方程的Fortran程序。-This is by using Gauss - Seidel iterative method to solve the linear/nonlinear equations of Fortran program.
-
-
0下载:
用高斯-赛德尔法求解非线性方程组,亲测可以使用,也很好理解-Gauss- Seidel method for solving nonlinear equations, pro-test can be used also well understood
-
-
1下载:
以王锡凡《现代电力系统分析》中2机5节点系统为基础的潮流计算,涵盖Gauss-Seidel法、Newton法、P-Q分解法和保留非线性法4种方法。-A series of power flow calculation programs based on the 2 generator-5 node system in the Modern Power System Analysis (Xifan Wang) , covering the Gauss-Seidel method, Newton
-