当前位置:
首页
资源下载

搜索资源 - parzen density estimation
搜索资源列表
-
0下载:
利用parzen窗进行概率密度函数估计,并给出仿真,程序简单易懂。-Using parzen Window probability density function estimation and the simulation, the program is simple to understand.
-
-
5下载:
二维数据集Parzen方窗非参数估计PDF(概率密度函数),三维结果显示,有图,有完整说明文档和程序运行说明,matlab编程环境,此为模式识别小作业 parzen-Dimensional data set Parzen Window non-parametric estimation side PDF (probability density function), three-dimensional results show that map, with complete documentat
-
-
1下载:
parzen window density estimation with Gaussian as a smoothing factor
-
-
0下载:
模式识别 作业 实现自动产生样本,并用最近距离法,贝叶斯分类,Parzen窗概率密度估计-Pattern recognition operations automatically generate the sample, and with the recent distance method, Bayesian classifier, Parzen window probability density estimation
-
-
1下载:
用Parzen窗法或者kn近邻法估计概率密度函数,得出贝叶斯分类器,对测试样本进行测试,比较与参数估计基础上得到的分类器和分类性能的差别.2. 同时采用身高和体重数据作为特征,用Fisher线性判别方法求分类器,将该分类器应用到训练和测试样本,考察训练和测试错误情况。将训练样本和求得的决策边界画到图上,同时把以往用Bayes方法求得的分类器也画到图上,比较结果的异同。3.选择上述或以前实验的任意一种方法,用留一法在训练集上估计错误率,与在测试集上得到的错误率进行比较。-Use Parzen Wi
-
-
2下载:
用matlab进行概率密度函数的非参数估计,主要有parzen窗法和kn近邻法。分别对平均分布和正态分布进行了仿真。-Non-parametric estimation of the probability density function using matlab, main the parzen window method and kn nearest neighbor method. The average distribution and normal distribution were
-
-
0下载:
machine learning-Density Estimation objects.
parzen - Parzen s windows kernel density estimator
indep - Density estimator which assumes feature independence
bayes - Classifer based on density estimation for each class
gauss - Normal distr
-
-
0下载:
核密度估计的parzen窗法,简单易用,适合于初学非参数估计的用户。-Kernel Density Estimation parzen window method, easy to use, suitable for novice non-parametric estimation of the user.
-
-
0下载:
The Parzen-window Density Estimation
-
-
1下载:
给定若干三维数据,建立训练概率模型,并对新数据进行估计。包括高斯模型、Parzen窗和K近邻密度估计-Given a number of three-dimensional data, the establishment of training probability model, and the new data is estimated. Including the Gaussian model, Parzen windows and K nearest neighbor density e
-
-
0下载:
Parzen窗估计法是一种非参数函数估计方法,它能够较好地描述多维数据的分布状态。其基本思想就是利用一定范围内各点密度的平均值对总体密度函数进行估计。-Parzen window estimation method is a nonparametric function estimation method, which can describe the distribution of multi-dimensional data. The basic idea is to use the ave
-
-
0下载:
核密度估计,matlabkernel density estimation是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenblatt (1955)和Emanuel Parzen(1962)提出,又名Parzen窗(Parzen window)。Ruppert和Cline基于数据集密度函数聚类算法提出修订的核密度估计方法。-kernel density estimation
-
-
0下载:
Multispectral remotely sensing imagery with high
spatial resolution, such as QuickBird, IKONOS satellite
imagery or Aerial imagery, especially in urban scenes, often
perform spectral variations and rich details within a category,
resulting in
-
-
0下载:
本实验的目的是学习Parzen窗估计和k最近邻估计方法。在之前的模式识别研究中,我们假设概率密度函数的参数形式已知,即判别函数J(.)的参数是已知的。本节使用非参数化的方法来处理任意形式的概率分布而不必事先考虑概率密度的参数形式。在模式识别中有躲在令人感兴趣的非参数化方法,Parzen窗估计和k最近邻估计就是两种经典的估计法。(The purpose of this experiment is to study the Parzen window estimation and the k nea
-