当前位置:
首页
资源下载

搜索资源 - pca classification
搜索资源列表
-
0下载:
模式识别matlab工具箱,包括SVM,ICA,PCA,NN等等模式识别算法,很有参考价值-pattern recognition Matlab toolbox, including SVM, ICA, PCA, NN pattern recognition algorithms, and so on, of great reference value
-
-
1下载:
此方法采用经典的PCA对人脸图像进行特征提取,用libsvm库函数的SVM分类器对图像分类。,This method uses the classical PCA on the face image feature extraction, with the libsvm library function of SVM classifier for image classification.
-
-
1下载:
用来进行主成分分析,实现数据压缩功能,也可以做特征提取与分类-Be used for principal component analysis, data compression, you can also do feature extraction and classification
-
-
0下载:
在PYTHON里面,采用LIBSVM,实现对TE数据的多类故障的分类。-In PYTHON inside, using LIBSVM, TE data to realize the classification of many types of failures.
-
-
0下载:
模式分类中应用到的PCA算法,包括其奇异值分解SVD算法。可用来降维提取主元素等。-pattern classification applied to the PCA algorithm, including its SVD singular value decomposition algorithm. Can be used to take down the main Viti Levu and other elements.
-
-
2下载:
使用pca和svm方法对表情进行分类,有较高的识别准确率-The use of pca and expression svm classification methods, which have a higher recognition accuracy
-
-
0下载:
pca lda knn 进行分类的pca部分的代码-pca lda knn classification of the pca part of the code
-
-
0下载:
pca分类算法,3个参数,一个是样本数据x,另外一个是主成分累积贡献率的一个闸值,作为选定主成分个数的一个重要数据。-pca classification algorithm, three parameters, one is the sample data x, the other is the main component of the cumulative contribution rate of the value of a gate, as the number of selected
-
-
0下载:
Principal component analysis,for study about classification data,develop for svm , lvq etc-Principal component analysis,for study about classification data,develop for svm , lvq etc
-
-
0下载:
pca分类程序,主要用于脑电信号的分类。具有较好的分类精度!-pca classification procedures, mainly for the classification of EEG signals. Has better classification accuracy!
-
-
3下载:
本程序是先用gabor小波变换对人脸图像处理,然后在用pca进行降维,最后用svm分类器进行多分类分类识别,包扩完整的orl人脸库,需注意的是,svm工具箱是用的libsvm工具箱,运行前先配置好libsvm。版本号:libsvm-mat-2[1].89-3[FarutoUltimate3.0]-This procedure is to use the human face gabor wavelet transform image processing, and then to reduce
-
-
0下载:
采用pca的方法,对样本进行分类。在实际中pca算法一般用于检测样本的相似度-Using pca method to classify the samples. In practice pca algorithm is generally used to detect the similarity of samples
-
-
0下载:
PCA分类,用于较好的去噪降维,matlab的各种自适应仿真分析。。自适应信息处理的算法、方案繁多,究其实质可归纳为遵循最小均方误差(Least Mean Square,LMS)准则及最小二乘-PCA classification for better denoising dimensionality reduction, a variety of adaptive matlab simulation analysis. . Adaptive information processing alg
-
-
0下载:
PCA/SVM算法实现图像分类,分类准确率可到达90%(Image classification by PCA/SVM algorithm)
-
-
3下载:
采用INP数据(145*145*200),该数据有16个类别, PCA进行数据降维,然后对降维数据采用kNN分类(k=1)。(Using INP data (145*145*200), the data has 16 categories, PCA carries out data reduction, and then uses kNN classification for dimensionality reduction data (k=1).)
-
-
2下载:
实现PCA分类.1、进行PCA的交叉检验。2、对数据进行PCA降维。3、进行分类,交叉检验。4、构造训练和测试的数据(PCA classification,Cross validation of PCA,PCA dimensionality reduction for data.)
-
-
2下载:
基于多光谱影像的地物分类预处理算法,使用matlab将数据tif影像打开,并展示,在数据波段中,使用PCA算法,使得信息集中利于分类。(Preprocessing algorithm of object classification based on multi spectral image)
-
-
2下载:
先用PCA降维,在利用支持向量机进行分类,这个分类是二分类,所以PCA的降维降到两维即可分类。(Firstly, PCA dimensionality reduction is used to conduct classification with support vector machine. This classification is binary classification, so the dimensionality reduction of PCA can be reduced t
-
-
7下载:
脑电eeg数据预处理,用于脑电信号的MATLAB处理程序,输入处理数据,进行matlab运算,PCA处理及SVM分类。(PCA Processing and SVM Classification of EEG Data)
-
-
1下载:
基于python,利用主成分分析(PCA)和K近邻算法(KNN)在MNIST手写数据集上进行了分类。
经过PCA降维,最终的KNN在100维的特征空间实现了超过97%的分类精度。(Based on python, it uses principal component analysis (PCA) and K nearest neighbor algorithm (KNN) to classify on the MNIST handwritten data set.
After PCA dime
-