资源列表
zlib1.zip
- 包含可用于C语言的zlib.lib和zlib.h
VBZIP
- 用VB调用ZIP.dll和unzip.dll实现文件的压缩和解压缩。-VB and unzip.dll ZIP.dll called a file compression and decompression.
Jpeg2000CodecUseJava
- 站长!这是一老外用Java写的Jpeg2000编解码程序,较全面详细。请查收!-head! This is a foreigner writing Java Jpeg2000 codec procedures, a more comprehensive detail. Please find!
canbus(FPGA)
- 基于FPGA的can 总线设计,采用verilog语言编写。在FPGA的开发环境下,新建一个工程,然后将本文件中的各个源代码添加进工程里,即可运行仿真。-FPGA-based bus design can use verilog language. FPGA development environment, a new project, and then the paper all the source code to add the project, Simulation can be run
Sample-2.3-20110710
- OpencvSharp是一个高效的OpenCV的C#版本,本资源是OpencvSharp最新版本的相关例程,具有很高的参考价值!-OpencvSharp is an efficient C# version of OpenCV, the resource is OpencvSharp latest version of the routines, a high reference value!
opencvDigitRecognize
- 基于opencv的数字识别系统,能通过模板准确识别数字-Opencv-based digital identification systems, accurate identification numbers through a template
ImageProcessing(openCV)
- 一个基于openCV的图像处理程序,包含有边缘检测,图像匹配,形态学变换,金字塔采样,视频采集,相机标定等各种函数。-OpenCV-based image processing program includes edge detection, image matching, morphological transformation, the pyramid samples, video capture, camera calibration and other functions.
视频监控(面积报警)
- 通过视频监控,对视频流帧处理,自动发现火情并报警。-Through video surveillance, video streaming frame processing, auto-discovery and fire alarm.
Distortion Correction
- VC+opencv 实现建筑物梯形畸变校正 radon变换 sobel边缘检测 直方图均衡图像增强 radon直线检测 仿射变换等算法-VC+ opencv trapezoidal distortion correction to achieve the building radon transform sobel edge detection image enhancement histogram equalization radon affine transform line detecti
SubPixelEdgeDetect
- 使用OPENCV编写的亚像素边缘提取,其中包括运行所需库,及测试数据;可直接运行。-Written using OPENCV subpixel edge detection, including running the needed libraries, and test data Can be run directly.
matlab_grabcut-master
- 用MATLAB实现了GrabCut的图像分割的源代码供参考-Using MATLAB to achieve the GrabCut image segmentation of the source code for reference
cnn_evaluation_smoke-master
- 此代码简单易学,能有效检测烟雾,识别率高,机器学习。(This code is easy to learn, can effectively detect smoke, high recognition rate, machine learning.)