资源列表
QQ_Crack_2005
- QQ 2005贺岁版登录口令加密算法及其源代码。-QQ 2005 Hesuiban login password encryption algorithm and its source code.
substitution
- 后工具烘干机烘干就 鬼画符规划覆盖 -tools dryer sheets drying on the planning coverage plans cover sheets
DCODEANDENCODE
- 字符串加密解密!算法很简单!抛砖引玉之用!请不要扔板砖!-string encryption and decryption. Algorithm is very simple! Congregate use! Please do not throw floor tiling!
otherlogonmode
- 另类密码登录窗体(拼图),只有正确拼出结果图才能进入。-alternative Password Login Window (puzzles), the only correct map decorated results can be admitted.
DES_fhaha
- 自己编的一个DES加密解密算法代码,运行结果给了比较详细的提示-developed a DES encryption and decryption algorithm code, the operating results for a more detailed tips
javaCrypt
- 自己写的java版的加密解密网络算法应用。有对称,非对称,数字签名,等应用-himself wrote the java version of the network encryption and decryption algorithm application. A symmetric, asymmetric, digital signature, and other applications
LCCrypto
- 在一个exe文件后面加上一个节,并设置密码,运行的时候需要输入密码才可以执行-in an exe file, insert a section, and set the password, Operation of the need to enter the password before they can implement
scdesjm
- 三重DES加密,其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式 -Triple DES encryption, which Key for a total of eight byte 64, the DES algorithm is the key; Data for eight byte 64 is to be encrypted or decrypted data; DES Mode for the
hcsxx
- 一解码程序,挺好的东东,不过是用汇编写的,希望能对大家有所帮助。其中还有一个是hcs系列芯片的接收程序。-a decoding procedure very well, the Eastern, but is the compilation was made in the hope that it can be helpful to everyone. Among them were a series of chips is hcs reception procedures.
clzw
- c描述的lzw算法,完整的可以在tc下运行!-c described lzw algorithm, the integrity of the tc can run!
encript
- 本程序通过混合光学双稳模型的迭代方程对多媒体文件进行混沌加密、解密(加密解密文件分别以.en和.de结尾),并显示加密、解密的结果。-the procedures adopted hybrid optical bistable iterative equation model of multimedia documents chaotic encryption, decryption (encryption and decryption of documents respectively. an
libI-2.1pre6
- Arithmetic for integers of almost unlimited size for C and C++. Developed and copyrighted by Ralf Dentzer-Arithmetic for integers of almost unlimit ed size for C and C. Developed and copyrighted by Ralf Dentzer