资源列表
P_gama
- 该函数对一个区间进行Pgama投影,返回修正的区间-the function of an interval Pgama projection, that the return interval
musicandesprit
- music算法和esprit算法在普估计中的matlab程序-music algorithm and esprit algorithm in Pristina estimate of Matlab procedures
strassen
- 传统方法与Strassen算法相结合的矩阵相乘算法,可以求出任意两个偶数阶矩阵的乘积!本代码简单,精简,非常好!非常巧妙!没用到什么复杂的东西!经测试完全正确!-Strassen with traditional methods based on the combination of matrix multiplication algorithm, can be obtained even arbitrary two-matrix product! The code simple, concis
TGKT(2)
- 变步长是一种很好的数值求解方法。 c语言编程,求解龙哥库塔的四阶 初值给定的常微分方程组-variable step is a good numerical solution method. C programming language, for Mangge Kuta initial four bands to the Ordinary Differential Equations
RGKT1-1
- c语言。定步长求解龙哥库塔的方程。可以用n来表示方程组得个数。此方法单精度。-c language. Fixed step for Mangge Kuta equation. N can be used to express equations in number. Single precision of this method.
quduishu
- 这是一个取对数的程序,比较简单的数学计算-This is a right for a number of procedures, a relatively simple mathematical calculation
4-SHIBAI
- c语言,求解五届龙哥库塔方程。用指针数组所做。很好.-c language, for five Mangge Cucuta equation. Done by a pointer array. Good.
RGKT13
- c语言编程。单精度的龙格-库塔-基尔法在初始条件下求解n元联立一阶常微分方程组;很好。-c programming language. Single precision of the Runge - Kutta - Kiel in the initial conditions for n simultaneous first-order differential equations; Good.
hanoisea
- 该程序用非递归的方法实现了汉诺塔问题的求解。当源盘的数目较少时该算法的执行速度比递归算法快,但当源盘块数较多时递归算法执行速度块-the program with non - recursive method of the Tower of Hanoi problem solving. When the source of the relatively small number of sites at the time of the algorithm implementation rate f
RGKT3
- 用c语言编程,定步长基尔法求解一阶常微分方程,给定一阶常微分方程的初值问题。-with c programming language, will step Kiel method of first-order differential equations, given an order ordinary differential equation initial value problems.
RGKT14
- c语言,双精度的龙格-库塔解常微分方程,初始条件给出,可以用来解方程组-c language, double-precision Runge - Kutta solution ordinary differential equations, given initial conditions, the solution can be used to equations
RGKT7
- 单精度龙格-库塔-基尔法,在初值条件下,借常微分方程。-single-precision Runge - Kutta - Kiel, in the initial conditions, under ordinary differential equations.