资源列表
EmotionClassifierBySvm
- 使用libsvm进行语音情感识别,特征使用的是39维mfcc。-Use libsvm for voice emotion recognition, feature using the 39-dimensional mfcc.
TrueWavAnalyzer
- 一款用VB编的声音频谱分析系统,可以分析声音的频率,阶码,可以编辑,截取保存。-A VB compiled voice spectrum analysis system, can be analyzed the frequency of voice, order code, can edit, interception preservation.
SGD-CMA
- 智能天线SGD一CMA随机梯度下降恒模算法matlab仿真-Smart antenna SGD-CMA stochastic gradient descent constant modulus algorithm matlab simulation
dazhihui
- 大智慧软件预警平台到手机的短信通知,接口是采用声音识别.-Large intelligent software early warning platform to the mobile phone SMS notification, the interface is the use of voice recognition.
matlab
- 1. 给一段原始的语音信号(可以是自己录制的一段语音),加上一频率为3.8kHz的高频余弦噪声和频率为3.6kHz的高频正弦噪声(幅度自己可以选择),用窗函数设计一滤波器(要求最小阻带衰减为50dB)对加噪后的语音信号进行滤波,画出滤波器的频率响应曲线,画出滤波前后的时域图和频谱图。 需要用到的函数: fir1 用窗函数设计FIR滤波器的函数 2. 用GUI设计一界面(如图1所示)完成如下功能: 1) 输入一语音信号,画出语音信号的时域图和频谱图; 2) 对语音信号加噪处理,
syctiaoyintaigui
- matlab编写的数字调音台,可以实现FIR、IIR高通、低通、带通、带阻操作,实时显示波形并且能缩放。有GUI界面-matlab tiaoyintai GUI
matlab-audio
- 用于音频分类的matlab程序,供大家下载学习。-Matlab program for audio classification, for everyone to download learning.
ibm
- 理想二值掩蔽的分析和计算,用于分析语音和噪声-Analyze and calculate the ideal binary mask for speech and noise analysis
speech_matlab
- 这是一个语音识别的代码包,资料很全,是基于动态时间规划技术的,有0到9十个数字建立的模板库,也有这是个数字的测试模板库,可以实现这十个数字的孤立词识别,再matlab实现的功能,包括几个子函数,比如端点检测,模板距离计算,完全可以运行,可以用于语音领域的初学者学习-This is a voice recognition code package, the information is very full, is based on dynamic time planning technology,
Beamform-final
- 这是基于波束形成方法的声源定位,一般信号处理用matlab语言,利用C语言进行了修改。(This is the sound source localization based on the beamforming method. The general signal processing is modified by the MATLAB language and is modified by the C language.)
基于MFCC的GMM的语音识别
- 基于MFCC的GMM的语音识别,先是通过MFCC提取语音信号的特征向量,然后用GMM进行分类识别(Voice recognition of GMM based on MFCC.First, the feature vectors of speech signals are extracted through MFCC, and then classified by GMM.)
speech_emotion_experiment
- 基于SVM的语音情感识别,可以从用户的话语中识别愤怒、开心、快乐、悲伤等情感(SVM-based speech emotion recognition, which can identify emotions such as anger, happiness, happiness, sadness, etc. from the user's words.)