文件名称:EvaluateMetric
介绍说明--下载内容来自于网络,使用问题请自行百度
Clustering Evaluation: Evaluate the clustering result by accuracy and normalized mutual information
Deng Cai, Xiaofei He, and Jiawei Han, "Document Clustering Using Locality Preserving Indexing", in IEEE TKDE, 2005. Bibtex source
bestMap
hungarian
MutualInfo
===========================================
fea = rand(50,70)
gnd = [ones(10,1) ones(15,1)*2 ones(10,1)*3 ones(15,1)*4]
res = kmeans(fea,4)
res = bestMap(gnd,res)
============= evaluate AC: accuracy ==============
AC = length(find(gnd == res))/length(gnd)
============= evaluate MIhat: nomalized mutual information =================
MIhat = MutualInfo(gnd,res)
-Clustering Evaluation: Evaluate the clustering result by accuracy and normalized mutual information
Deng Cai, Xiaofei He, and Jiawei Han, "Document Clustering Using Locality Preserving Indexing", in IEEE TKDE, 2005. Bibtex source
bestMap
hungarian
MutualInfo
===========================================
fea = rand(50,70)
gnd = [ones(10,1) ones(15,1)*2 ones(10,1)*3 ones(15,1)*4]
res = kmeans(fea,4)
res = bestMap(gnd,res)
============= evaluate AC: accuracy ==============
AC = length(find(gnd == res))/length(gnd)
============= evaluate MIhat: nomalized mutual information =================
MIhat = MutualInfo(gnd,res)
===========================================
Deng Cai, Xiaofei He, and Jiawei Han, "Document Clustering Using Locality Preserving Indexing", in IEEE TKDE, 2005. Bibtex source
bestMap
hungarian
MutualInfo
===========================================
fea = rand(50,70)
gnd = [ones(10,1) ones(15,1)*2 ones(10,1)*3 ones(15,1)*4]
res = kmeans(fea,4)
res = bestMap(gnd,res)
============= evaluate AC: accuracy ==============
AC = length(find(gnd == res))/length(gnd)
============= evaluate MIhat: nomalized mutual information =================
MIhat = MutualInfo(gnd,res)
-Clustering Evaluation: Evaluate the clustering result by accuracy and normalized mutual information
Deng Cai, Xiaofei He, and Jiawei Han, "Document Clustering Using Locality Preserving Indexing", in IEEE TKDE, 2005. Bibtex source
bestMap
hungarian
MutualInfo
===========================================
fea = rand(50,70)
gnd = [ones(10,1) ones(15,1)*2 ones(10,1)*3 ones(15,1)*4]
res = kmeans(fea,4)
res = bestMap(gnd,res)
============= evaluate AC: accuracy ==============
AC = length(find(gnd == res))/length(gnd)
============= evaluate MIhat: nomalized mutual information =================
MIhat = MutualInfo(gnd,res)
===========================================
(系统自动生成,下载前可以参看下载内容)
下载文件列表
bestMap.m
hungarian.m
MutualInfo.m
hungarian.m
MutualInfo.m