- website This login/register users example based on java servlets and jsp.it requieres Tomcat or glassfish server.More instructions on how it works or instalation u can find inside archive.
- Experiment-III 大学Java课程实验三
- biaobai 网友制作网页版的表白范本
- octave-default Using octave to generate the musis filter
- BestFit100 采用 最佳适应算法进行内存块的分配和回收
- 软件技术基础 第三版 黄迪明 课后答案[1-8章].pdf software technique of c language
文件名称:fit_ML_laplace
-
所属分类:
- 标签属性:
- 上传时间:2012-11-16
-
文件大小:1.35kb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
fit_ML_normal - Maximum Likelihood fit of the laplace distribution of i.i.d. samples!.
Given the samples of a laplace distribution, the PDF parameter is found
fits data to the probability of the form:
p(x) = 1/(2*b)*exp(-abs(x-u)/b)
with parameters: u,b
format: result = fit_ML_laplace( x,hAx )
input: x - vector, samples with laplace distribution to be parameterized
hAx - handle of an axis, on which the fitted distribution is plotted
if h is given empty, a figure is created.
output: result - structure with the fields
u,b - fitted parameters
CRB_b - Cram?r-Rao Bound for the estimator value
RMS - RMS error of the estimation
type - ML
- fit_ML_normal - Maximum Likelihood fit of the laplace distribution of i.i.d. samples!.
Given the samples of a laplace distribution, the PDF parameter is found
fits data to the probability of the form:
p(x) = 1/(2*b)*exp(-abs(x-u)/b)
with parameters: u,b
format: result = fit_ML_laplace( x,hAx )
input: x - vector, samples with laplace distribution to be parameterized
hAx - handle of an axis, on which the fitted distribution is plotted
if h is given empty, a figure is created.
output: result - structure with the fields
u,b - fitted parameters
CRB_b - Cram?r-Rao Bound for the estimator value
RMS - RMS error of the estimation
type - ML
Given the samples of a laplace distribution, the PDF parameter is found
fits data to the probability of the form:
p(x) = 1/(2*b)*exp(-abs(x-u)/b)
with parameters: u,b
format: result = fit_ML_laplace( x,hAx )
input: x - vector, samples with laplace distribution to be parameterized
hAx - handle of an axis, on which the fitted distribution is plotted
if h is given empty, a figure is created.
output: result - structure with the fields
u,b - fitted parameters
CRB_b - Cram?r-Rao Bound for the estimator value
RMS - RMS error of the estimation
type - ML
- fit_ML_normal - Maximum Likelihood fit of the laplace distribution of i.i.d. samples!.
Given the samples of a laplace distribution, the PDF parameter is found
fits data to the probability of the form:
p(x) = 1/(2*b)*exp(-abs(x-u)/b)
with parameters: u,b
format: result = fit_ML_laplace( x,hAx )
input: x - vector, samples with laplace distribution to be parameterized
hAx - handle of an axis, on which the fitted distribution is plotted
if h is given empty, a figure is created.
output: result - structure with the fields
u,b - fitted parameters
CRB_b - Cram?r-Rao Bound for the estimator value
RMS - RMS error of the estimation
type - ML
相关搜索: parameter fit
(系统自动生成,下载前可以参看下载内容)
下载文件列表
fit_ML_laplace.m
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.