- WinkSrc this data is winform grid control extension. this source have various control of grid control and develope program such as excel
- The_students_study_on_DS18B20 关于DS18B20的毕业设计论The students study on DS18B20
- 2G-3G 2G与3G互通技术实现文章
- LKCoreAlg 最近做了个连连看游戏
- SpecDis 加密密码
- AC1.tar linux下C语言实现TCP/socket编程的客户端源码
文件名称:ABCNNTrain
介绍说明--下载内容来自于网络,使用问题请自行百度
Training Artificial Neural Network.
XOR Problem.
Summation Units, Log-Sigmoid Neurons with Biases.
Input Layer: 2, Hidden Layer: 2, Output Layer: 1 neurons.
Returns mean square error between desired and actual outputs.
Reference Papers:
D. Karaboga, B. Basturk Akay, C. Ozturk, Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neural Networks, LNCS: Modeling Decisions for Artificial Intelligence, 4617/2007, 318-329, 2007.
D. Karaboga, C. Ozturk, Neural Networks Training by Artificial Bee Colony Algorithm on Pattern Classification, Neural Network World, 19(3), 279-292, 2009.
*/
- Training Artificial Neural Network.
XOR Problem.
Summation Units, Log-Sigmoid Neurons with Biases.
Input Layer: 2, Hidden Layer: 2, Output Layer: 1 neurons.
Returns mean square error between desired and actual outputs.
Reference Papers:
D. Karaboga, B. Basturk Akay, C. Ozturk, Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neural Networks, LNCS: Modeling Decisions for Artificial Intelligence, 4617/2007, 318-329, 2007.
D. Karaboga, C. Ozturk, Neural Networks Training by Artificial Bee Colony Algorithm on Pattern Classification, Neural Network World, 19(3), 279-292, 2009.
*/
XOR Problem.
Summation Units, Log-Sigmoid Neurons with Biases.
Input Layer: 2, Hidden Layer: 2, Output Layer: 1 neurons.
Returns mean square error between desired and actual outputs.
Reference Papers:
D. Karaboga, B. Basturk Akay, C. Ozturk, Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neural Networks, LNCS: Modeling Decisions for Artificial Intelligence, 4617/2007, 318-329, 2007.
D. Karaboga, C. Ozturk, Neural Networks Training by Artificial Bee Colony Algorithm on Pattern Classification, Neural Network World, 19(3), 279-292, 2009.
*/
- Training Artificial Neural Network.
XOR Problem.
Summation Units, Log-Sigmoid Neurons with Biases.
Input Layer: 2, Hidden Layer: 2, Output Layer: 1 neurons.
Returns mean square error between desired and actual outputs.
Reference Papers:
D. Karaboga, B. Basturk Akay, C. Ozturk, Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed-Forward Neural Networks, LNCS: Modeling Decisions for Artificial Intelligence, 4617/2007, 318-329, 2007.
D. Karaboga, C. Ozturk, Neural Networks Training by Artificial Bee Colony Algorithm on Pattern Classification, Neural Network World, 19(3), 279-292, 2009.
*/
(系统自动生成,下载前可以参看下载内容)
下载文件列表
ABCNNTrain/
ABCNNTrain/calculateFitness.m
ABCNNTrain/GreedySelection.m
ABCNNTrain/nntrainxor221b.m
ABCNNTrain/runABC.m
ABCNNTrain/ScoutSelection.m
ABCNNTrain/calculateFitness.m
ABCNNTrain/GreedySelection.m
ABCNNTrain/nntrainxor221b.m
ABCNNTrain/runABC.m
ABCNNTrain/ScoutSelection.m