- wince6.0RIL wince6.0 RIL层驱动开发 wince6.0 RIL层驱动开发
- 04470127.rar Blind Source Separation (BSS) is a statistical approach to separate individual signals from an observed mixture of a group of signals. BSS relies on only very weak assumptions on the signals and the mixing process and this blindness enables the technique to be used in a wide variety of situations.
- control-mouse 代码主要利用了C#的事件的原理实现了对鼠标的控制
- Vigenere 基于文件流的加密小程序
- project_5 基于MFC的简单画图
- WindowsFormsApplication1 对话框设置 自动查询输出并纠错
文件名称:stanford-deep-learning-matlab-code
介绍说明--下载内容来自于网络,使用问题请自行百度
stanford大学deep learning在线课程课后练习代码,我自己写的,可以参考一下。-Excercise of deep learning online course from http://deeplearning.stanford.edu/wiki. It is written by myself, aiming to help other students who is confused in the course.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
cnnConvolve.m
cnnExercise.m
sparseAutoencoderLinearCost.m
softmaxExercise.m
checkStackedAECost.m
softmaxCost.m
softmaxPredict.m
sparseAutoencoderCost.m
stlExercise.m
feedForwardAutoencoder.m
loadMNISTImages.m
pca_gen.m
pca_2d.m
trainMNIST.m
train.m
sparseAutoencoderCost - 副本.m
computeNumericalGradient.m
sampleIMAGES.m
linearDecoderExercise.m
displayColorNetwork.m
stackedAEExercise.m
softmaxTrain.m
stackedAEPredict.m
stackedAECost.m
params2stack.m
stack2params.m
display_network.m
sampleIMAGESRAW.m
loadMNISTLabels.m
checkNumericalGradient.m
initializeParameters.m
cnnPool.m
cnnExercise.m
sparseAutoencoderLinearCost.m
softmaxExercise.m
checkStackedAECost.m
softmaxCost.m
softmaxPredict.m
sparseAutoencoderCost.m
stlExercise.m
feedForwardAutoencoder.m
loadMNISTImages.m
pca_gen.m
pca_2d.m
trainMNIST.m
train.m
sparseAutoencoderCost - 副本.m
computeNumericalGradient.m
sampleIMAGES.m
linearDecoderExercise.m
displayColorNetwork.m
stackedAEExercise.m
softmaxTrain.m
stackedAEPredict.m
stackedAECost.m
params2stack.m
stack2params.m
display_network.m
sampleIMAGESRAW.m
loadMNISTLabels.m
checkNumericalGradient.m
initializeParameters.m
cnnPool.m
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.