- ASM-DOS-IO 汇编语言实现DOS系统功能调用
- Struts_Spring__Hibernate_UserManag SSH项目:用户管理(增删改查) 创建新项目 用Struts 设计器制作前台业务流程 设计业务层功能 开发业务层和DAO 层代码 开发前台页面流程 整合Spring
- literature-survey word document for 2nd sem project
- 模拟退火算法 此问题为传统的TSP问题
- 孵化环境温湿度监控系统设计 使用51单片机来实现(Design of temperature and humidity monitoring system for incubating environment)
- MATLAB智能算法30个案例分析——源代码 神经网络案例
文件名称:粒子群
-
所属分类:
- 标签属性:
- 上传时间:2018-09-25
-
文件大小:5kb
-
已下载:1次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。(Particle Swarm Optimization, also known as Particle Swarm Optimization or Particle Swarm Optimization, abbreviated as PSO, is a new evolutionary algorithm developed by J. Kennedy and RC Eberhart in recent years (Evolutionary Algorithm - EA). ). The PSO algorithm is a kind of evolutionary algorithm. It is similar to the simulated annealing algorithm. It also starts from the random solution and finds the optimal solution through iteration. It also evaluates the quality of the solution by fitness, but it is simpler than the rules of genetic algorithm. It does not have the "crossover" and "mutation" operations of the genetic algorithm, which seeks global optimality by following the current searched optimal values. This kind of algorithm has attracted the attention of academic circles because of its advantages of easy implementation, high precision and fast convergence)
相关搜索: 粒子群算法
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
粒子群\Copy_of_main.m | 568 | 2018-09-03 |
粒子群\Decisfun.m | 564 | 2018-09-03 |
粒子群\mayi.m | 1309 | 2018-09-04 |
粒子群\Minforedynprog.m | 2954 | 2018-09-03 |
粒子群\SAPSO.m | 2398 | 2018-09-03 |
粒子群\Stageobjfun.m | 8208 | 2018-09-03 |
粒子群\Statetransfun.m | 109 | 2018-09-03 |
粒子群 | 0 | 2018-09-04 |
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.