- qiche 汽车理论
- STM32_DMA_FIFO_an3109 st company micro processor stm32f DMA FIFO communication.
- signal 产生一个随机信号和两个不同频率但频率间隔很小的正弦信号
- ME-Project-Reference This project used code verilog to load on Kit Xilinx Spartan 3A. Wireless Sensor Nodes Processor Architecture and Design.I prefered on the internet
- 小波神经网络预测timeseries 关于小波神经网络的matlab 源程序
- twodimen_OpCrystal_BandStr_PWM 用平面波展开法计算二维光子晶体的能带结构(巨详细)(Calculation of band structure of two dimensional photonic crystals by plane wave expansion method)
文件名称:BP神经网络股票预测
介绍说明--下载内容来自于网络,使用问题请自行百度
在600085这个数据表中,以XZSLX综合作为输入,以收盘价作为输出
以前595个数据作为训练样本,后100个数据作为实际输出。
通过训练数据建立模型,最终输出100个预测的股票收盘价。
将预测的收盘价和实际的收盘价进行对比并求取误差,从而判断所建立模型的准确性。
RBF神经网络调用newff函数实现。(In the data table of 600085, XZSLX synthesis is used as input and closing price as output.
The former 595 data are used as training samples, and the latter 100 data are used as actual output.
Through training data to build a model, the final output of 100 predicted stock closing prices.
By comparing the predicted closing price with the actual closing price and calculating the error, the accuracy of the established model can be judged.
RBFneural network is implemented by calling newff function.)
以前595个数据作为训练样本,后100个数据作为实际输出。
通过训练数据建立模型,最终输出100个预测的股票收盘价。
将预测的收盘价和实际的收盘价进行对比并求取误差,从而判断所建立模型的准确性。
RBF神经网络调用newff函数实现。(In the data table of 600085, XZSLX synthesis is used as input and closing price as output.
The former 595 data are used as training samples, and the latter 100 data are used as actual output.
Through training data to build a model, the final output of 100 predicted stock closing prices.
By comparing the predicted closing price with the actual closing price and calculating the error, the accuracy of the established model can be judged.
RBFneural network is implemented by calling newff function.)
(系统自动生成,下载前可以参看下载内容)
下载文件列表
文件名 | 大小 | 更新时间 |
---|---|---|
600085.xlsx | 239634 | 2019-06-13 |
RBF.m | 1365 | 2019-06-13 |
RBF.jpg | 72829 | 2019-06-13 |
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.