搜索资源列表
shiyan6-B 计算机图形学实验6 常用曲面和曲线的生成算法
- 计算机图形学实验6 常用曲面和曲线的生成算法 包括(三次B样条曲线算法)-Computer Graphics Lab 6 common surfaces and curves, including generating algorithm (cubic B-spline algorithm)
tongxunlu
- 使用c#完成简单通讯录,附上实验报告,源代码和工程文件-Use c# to complete a simple address book, attach lab reports, source code and project files
kc2-50_1260053
- jus learn how to interface spec analysers sing lab windows
cartoon-vc2008
- 用vc++2008开发的工程,基于Lab颜色模型的梯度进行区域划分,完成卡通画、水墨画处理-use vc++2008 build project,base Lab color model achieve cartoon,oil
shiyan6-double-Bezier
- 计算机图形学实验6 常用曲面和曲线的生成算法 包括(双三次Bezier曲面算法)-Computer Graphics Lab 6 common surfaces and curves, including generating algorithm (bi-cubic Bezier surface algorithm)
Form1
- 计算机图形学实验-扫描线实现的便填充算法,可以填充多边形。采用的是清华的那本课本上所写的伪代码。-Computer Graphics Lab- scan line filling algorithm to achieve it, you can fill the polygon. Tsinghua is used textbook that is written in this pseudo-code.
lab8_zawita
- it is computer graphics lab with related to lab 8 which do reflectio to sphere-it is computer graphics lab with related to lab 8 which do reflectio to sphere
face
- 图像处理中人脸识别的实验报告,非常详细,推荐-Face recognition in image processing lab report is very detailed, it is recommended
lab 14 texture mapping
- 实验14,纹理贴图的示例源代码,Visual .net 开发 - Lab 14 texture mapping source code!
OpenGL
- 中文称三维图形标准,是由AT&T公司UNIX软件实验室、IBM、DEC、SUN、HP、Microsoft和SGI等多家公司在GL图形库标准的基础上联合推出的开放式图形库,它使在微机上实现三维真实感图形的生成与显示成为可能。由于OpenGL是开放的图形标准,用户原先在UNIX下开发的OpenGL图形软件很容易移植到微机上的WindowsNT/95上。-Chinese called 3D graphics standard, is AT & T' s UNIX Software Lab
shadedClock
- 带阴影的时钟附实验报告【windows编程】-Clock attached lab reports shaded windows programming []
zhongdianhuayuanhetuoyuan
- 包含了Bresensham画线、中点画圆、中点画椭圆算法代码,可以直接运行;以及中点画圆与中点画椭圆的实验报告。-Contains Bresensham draw lines, the midpoint Circle, were dotted ellipse algorithm code can be directly run and lab reports midpoint Circle and were dotted ellipse.
lab
- 对一个不对称的实序列进行傅里叶分析,将信号分解为奇部和偶部,求出对应的傅里叶变化-Implementation of an asymmetric sequence Fourier analysis, the signal is decomposed into odd and even the Department of the Ministry, find the corresponding Fourier transform
