搜索资源列表
josephus.1
- 描述:设编号为1,2,…,n(n>0)个人按顺时针方向围坐一圈,每人持有一个正整数密码。开始时任意给出一个报数上限值m,从第一个人开始顺时针方向自1起顺序报数,报到m时停止报数,抱m的人出列,从他在顺时针方向上的下一个人起重新自1起顺序报数;如此下去,直到所有人全部出列为止。要求设计一个程序模拟此过程,并给出出列人的编号序列。 .算法思想: Jeseph函数是实现问题要求的主要函数,其算法思想是:从1至m对带头结点的单循环链表循环计数,到m时,输出该结点的编号值,,再从
short_path
- 图遍历找两点最短路径的多中方法:贪心 回朔 分支界限-map traverse the shortest path to find two more of the methods : greed back Schomburg branch Limits
my_progress1
- 这是一个ronberg算法,可以在输入上下限之后,同时可以显示所要求的结果-This is a ronberg algorithm, you can enter after the upper and lower limits, at the same time can show the required results
C-SHARP
- 1、Storage_CheckDetail INSERT,update 功能:库存表中的数量改成盘点表中的数量 2、Storage_InDetail INSERT, UPDATE, DELETE 功能:调整库存 3、Sys_DrugDetail UPDATE 功能:修改库存上下限 修改药品名称、助记码-1, Storage_CheckDetail INSERT, update functions: inventory table i
wenduxuexiban
- 基于STC/AT89 C/S51的单点温度检测 DS18B20 可控制上下限温度-STC/AT89 C/S51 based on the detection of single-point temperature can be controlled DS18B20 the upper and lower limits of temperature
fenzhi
- 算法设计程序设计中分支界限法的C++实现-Algorithm design process the design limits of the law branch of C++ to achieve
fenzhijiexian
- 算法设计课程设计中的分支界限算法的c++代码实现-Algorithm design course design algorithm in a branch of the limits of c++ code to achieve
ganduyi
- 这个程序是干度仪的程序,对木材类的干湿度进行检测,并显示在数码管上,超过或低于设置限值则报警提示-This program is dryness instrument procedures, the humidity of timber to detect and display the digital on, above or below set limits for the alarm
Colors
- RGB to HSV conversion, and HSV to RGB conversion utilities. Change constants to change range limits. RGB_MAX is default 255 limit, H_MAX to change Hue limits, SV_MAX to change Saturation/Value limits.
123422111333
- 温度上下限设置,方面于温度控制系统设计,按键设置上下限,满足人工需要。-Upper and lower temperature setting, set the upper and lower limits in terms of the temperature control system design, key to meet labor needs.
BankC
- 一个简单的银行的计算系统 适合初学者看看 对了 是C#程序哦 -Abstract:As a region merge technology for image segmentation, traditional method of Region Adjacency Graph(RAG)has lots of shortness such as complicated data structure and algorithm, difficulty of expansibility and m