搜索资源列表
Wavelet-Texture
- 这个是我整理了Fora和石丽的小波纹理分析的程序得到的,运行的过程中出现了“Error in ==> waveTexMap at 74 g1(k3:end-k4,k5:end-k6) = f ”的错误提示,现将我标注了错误提示的程序传上,大侠们帮解决一下-Based on wavelet multi-scale texture features of the gray image source detection, wavelet can customize
10.1.1.74.5643
- aleix@ecn. Semantic queries to a database of images are more desirable than low-level feature queries, because they facilitate the user s task. One such approach is the object-related image retrieval. In the context people s names and facia
Wavelet_IRLS
- 压缩感知CS——采用小波变换进行稀疏表示,高斯随机矩阵为观测矩阵,重构算法为ILRS算法,对256*256的lena图处理,比较原图和IRLS算法在不同采样比例(0.74、0.5、0.3)下的重构效果,并各运行50次,比较算法性能PSNR和每次的运行时间-Compressed sensing CS- using wavelet transform as sparse representation, Gaussian random matrix as the observation matrix
Wavelet_OMP
- 压缩感知CS——采用小波变换进行稀疏表示,高斯随机矩阵为观测矩阵,重构算法为OMP算法,对256*256的lena图处理,比较原图和OMP算法在不同采样比例(0.74、0.5、0.3)下的重构效果,并各运行50次,比较算法性能PSNR和每次的运行时间 -Compressed sensing CS- using wavelet transform as sparse representation, Gaussian random matrix as the observation matrix
Wavelet_SP
- 压缩感知CS——采用小波变换进行稀疏表示,高斯随机矩阵为观测矩阵,重构算法为SP算法,对256*256的lena图处理,比较原图和SP算法在不同采样比例(0.74、0.5、0.3)下的重构效果,并各运行50次,比较算法性能PSNR和每次的运行时间-Compressed sensing CS- using wavelet transform as sparse representation, Gaussian random matrix as the observation matrix and
Wavelet_ROMP
- 压缩感知CS——采用小波变换进行稀疏表示,高斯随机矩阵为观测矩阵,重构算法为ROMP算法,对256*256的lena图处理,比较原图和ROMP算法在不同采样比例(0.74、0.5、0.3)下的重构效果,并各运行50次,比较算法性能PSNR和每次的运行时间 -Compressed sensing CS- using wavelet transform as sparse representation, Gaussian random matrix as the observation matr
Wavelet_SL0
- 压缩感知CS——采用小波变换进行稀疏表示,高斯随机矩阵为观测矩阵,重构算法为SL0算法,对256*256的lena图处理,比较原图和SL0算法在不同采样比例(0.74、0.5、0.3)下的重构效果,并各运行50次,比较算法性能PSNR和每次的运行时间 -Compressed sensing CS- using wavelet transform as sparse representation, Gaussian random matrix as the observation matrix
ISAR_RD
- ISAR成像RD算法,设定目标点数为74时的仿真程序-RD SAR imaging algorithm, set a target of 74 points when the simulation program
