搜索资源列表
KPCAandPCA
- 含有pca和kpca算法,具有很好的在图像处理方面的应用-contain pca and kpca algorithm, is very good in image processing the application
KPCA
- KPCA主要在图像去噪声方面有应用。此外还可以进行特征提取,降维使用
KPCA.rar
- 快速的人脸特征提取算法KPCA,比普通的pca特征提取算法在效率上好了不少,Fast facial feature extraction algorithm KPCA, than ordinary PCA feature extraction algorithm in the efficiency of a good many
KPCA.rar
- 一个很好的PCA程序。它可用于数据的降维,消噪及特征提取。,A good PCA procedures. It can be used for data dimensionality reduction, de-noising and feature extraction.
KPCA
- 为解决PCA不适合多指标综合分析中非线性主成分分析的问题 ,采用核主成分分析 (kpca)方法 ,对我国不同地区 16种腐乳的品质进行了综合评价。 -PCA is not suitable to address the many indicators of a comprehensive analysis of non-linear principal component analysis of the problem, using Kernel Principal Component An
KPCA
- 人脸识别中KPCA算法,调试成功。大家可以下载-KPCA face recognition algorithms, debugging success.
BasedonprincipalcomponentanalysisoftheFaceRecognit
- 在特征提取阶段,研究了PCA, 2DPCA, (2D) 2PCA, DiagPCA, DiagPCA-F-2DPCA等多 种方法。不同于基于图象向量的PCA特征提取,由于2DPCA, (2D) ZPCA, DiagPCA和 DiagPCA-I-2DPCA的特征提取都直接基于图象矩阵,计算量小,所以特征的提取速度明 显高于PCA方法。-In the feature extraction stage, the study of the PCA, 2DPCA, (2D) 2PCA,
kpca
- 主成分分析,人脸识别,模式识别,对图像处理有点帮助-Principal component analysis, face recognition, pattern recognition, image processing for a little help
KPCA_feature_extraction
- 别人的东西,有关KPCA特征提取的,看过了,很好很强大-Other people' s things, the KPCA feature extraction, and seen, very good very strong
kpca
- 核主成分分析 把图像投影到核空间上进行主成分分析 抽取特征向量进行识别-KPCA
denoise_kpca
- 去噪基于kPCA方法,欢迎使用。使用matlab编程-De-noising method based on kPCA are welcome to use. Programming using matlab
kpca
- kpca程序代码,用于图形图像处理,很经典的算法程序-kpca code for the graphic image processing, it is the classic algorithm program
learning-with-kernels
- 核学习 这是介绍核方法非常经典的书籍。里面包括各种核方法:kpca,kfda以及贝叶斯核方法-learning with kernels, this book is a classical book about kernel。 really worth of reading。
KPCA
- 子空间的方法,KPCA matlab程序,可以实现对掌纹图像的特征提取和匹配。-Subspace methods, KPCA matlab program, you can achieve the palmprint image feature extraction and matching.
KPCA-demo2
- 这是一个比较完整的KPCA算法,通过这个算法可以快速的找到主要的特征向量进行主成分分析。-This is a relatively complete KPCA algorithm, this algorithm can quickly find the main feature vector principal component analysis.
KPCA-FACE
- 采用KPCA方法的人脸识别算法,包含算法的matlab实现源码及相关测试、训练数据集-KPCA based face recognition algorithm, matlab source code of the algorithm implementation and related testing, training data set contained
KPCA
- 核主成分分析KPCA算法,经过核变换将样本映射到线性可分的高维空间,再进行PCA降维。包括训练、测试、识别整个过程-KPCA kernel principal component analysis algorithm through nuclear transformation samples are mapped to linearly separable high-dimensional space, then PCA dimensionality reduction. Including
KPCA
- 基于KPCA的人脸识别:先对人脸图像训练样本进行训练,然后给出人脸图像的测试样本能进行人脸识别。用ORL 标准人脸数据库进行测试。
KPCA
- 人脸识别的kpca算法,在pca算法的基础上进行了改进,主要是针对yale数据库,可以在其他数据库上使用-The kpca algorithm about face recogniton,it make an improvement with the pca algorithm,the base of the experiment is yale,but can be used on other face
kPCA
- 实现kPCA算法,用于数据降维图像处理等多领域。本程序包可选用多种核函数,且可以直接增添新的数据点,方便快捷。(KPCA algorithm, for data reduction, image processing and many other fields. This package can use a variety of kernel functions, and can directly add new data points, convenient and quick.)