搜索资源列表
LS-SVM_Based_on_PSO
- 基于混沌粒子群与模拟退火优化算法的最小二乘支持向量机参数自选择方法,是英文
SAPSO
- 模拟退火-粒子群算法,该程序将模拟退火算法和粒子群算法相结合,对优化参数有很好的效果-Simulated annealing- particle swarm optimization, the program will be simulated annealing algorithm and particle swarm optimization by combining optimization parameters have a good effect
SimuAPSO
- 基于模拟退火的粒子群算法,解决无约束优化问题-Based on simulated annealing particle swarm algorithm to solve unconstrained optimization problems
psoandimprovedpso
- 基本粒子群优化算法和改进粒子群优化算法程序,包括:用基本粒子群算法求解无约束优化问题,用带压缩因子的粒子群算法求解无约束优化问题,用线性递减权重粒子群优化算法求解无约束优化问题,用自适应权重粒子群优化算法求解无约束优化问题,用随机权重粒子群优化算法求解无约束优化问题,用学习因子同步变化的粒子群优化算法求解无约束优化问题,用学习因子异步变化的粒子群优化算法求解无约束优化问题,用二阶粒子群优化算法求解无约束优化问题,用二阶振荡粒子群优化算法求解无约束优化问题,用混沌粒子群优化算法求解无约束优化问题,
cpslssvm
- 基于混沌粒子群与模拟退火优化算法的最小二乘支持向量机参数自选择方法-Based on Chaotic Particle Swarm Optimization and Simulated Annealing least squares support vector machine parameter self-selection method
pso
- 粒子群优化算法是一种进化优化技术,源于对鸟群扑食的行为,是一种基于迭代的优化工具。此文件提供了基本粒子群算法、带压缩因子的粒子群算法、二阶粒子群算法、二阶振荡粒子群算法、权重改进的粒子群算法、混沌粒子群算法、基于杂交的粒子群算法、基于模拟退火的粒子群算法的MATLAB源代码。-PSO is an evolutionary optimization technique, derived from the behavior of the birds of prey, is based on iter
SimuAPSO
- 模拟退火发与粒子群算法的结合,程序可用,收敛的很快-Simulated Annealing and Particle Swarm made the combination of procedures available, fast convergence
ApplicationofLeastSquareSupportVectorMachine
- 基于粒子群与模拟退火优化算法的最小二乘支持向量机参数自选择方法预测混沌序列-anessayaboutchaospredictionbyPSOLSSVM
智能算法
- 智能算法,含有遗传算法、模拟退火算法、BP神经网络优化、免疫算法、粒子群算法、蚁群算法等智能算法,MATLAB亲测可用。(Intelligent algorithm, including genetic algorithm, simulated annealing algorithm, BP neural network optimization, immune algorithm, particle swarm algorithm, ant colony algorithm and other
liziqun
- 粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等 开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的"交叉"(Crossover) 和"
pso
- 用于优化参数,粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等[1] 开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”
粒子群算法源代码
- 改进的粒子群算法,与遗传算法,神经网络,模拟退火等算法相结合(An improved particle swarm optimization algorithm combined with genetic algorithm, neural network, simulated annealing algorithm and so on)
13种PSO算法以及课件
- 各算法对应的问题如下: PSO 用基本粒子群算法求解无约束优化问题 YSPSO 用带压缩因子的粒子群算法求解无约束优化问题 LinWPSO 用线性递减权重粒子群优化算法求解无约束优化问题 SAPSO 用自适应权重粒子群优化算法求解无约束优化问题 RandWPSO 用随机权重粒子群优化算法求解无约束优化问题 LnCPSO 用学习因子同步变化的粒子群优化算法求解无约束优化问题 AsyLnCPSO 用学习因子异步变化的粒子群优化算法求解无约束优化问题
Desktop
- 利用智能算法可以求最值,以及利用小波变换可以求功率(Intelligent algorithm seeks the most value and uses wavelet transform to find power.)
粒子群
- 粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操
30个智能算法模型
- 1-8遗传算法,9 多目标Pareto最优解搜索算法,10 基于多目标Pareto的二维背包搜索算法,11-12免疫算法,13-17粒子群算法,18鱼群算法,19-21模拟退火算法,22-24蚁群算法,25-27神经网络,28 支持向量机的分类,29 支持向量机的回归拟合,30 极限学习机的回归拟合及分类(1-8 genetic algorithm, 9 multi-objective Pareto optimal solution search algorithm, 10 multi-obje
MATLAB智能算法30个案例分析代码
- 压缩包内是关于BeiHang出版的matlab智能算法30个案例的代码,对于学习理解智能算法的原理和编程有一定的帮助。如遗传算法、粒子群算法、免疫优化算法、模拟退火算法、BP算法等。(there are 30 matlab codes, which match a book about intelligence algorithms,such as genetic algorithms, PSO, ACO,BPO,etc. WISH that will be help for you.)
粒子群算法原理及各种改进的PSO的matlab源码
- 各类改进粒子群算法,模拟退火,混合,随即权重,粒子群算法(All kinds of improved particle swarm optimization, simulated annealing, hybrid, random weight, particle swarm optimization)
BAS
- 类似于遗传算法、粒子群算法、模拟退火等智能优化算法,天牛须搜索不需要知道函数的具体形式,不需要梯度信息,就可以实现高效寻优。(Similar to genetic algorithm, particle swarm optimization algorithm, simulated annealing and other intelligent optimization algorithms, Taurus search can achieve efficient optimization wi
粒子群算法
- 粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等 开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的"交叉"(Crossover) 和"