搜索资源列表
vbC12
- 用VB实现解常微分方程组 包括定步长四阶龙格-库塔法、自适应变步长的龙格-库塔法、改进的中点法、外推法等-VB solution of ordinary differential equations including fixed step 4-order Runge - Kutta method, adaptive variable step of the Runge - Kutta method to improve the midpoint of the law, such as ex
solution-of-Differential-equation-group
- 提供了4种解常微分方程组的c++代码:定步长四阶龙格-库塔(Runge-Kutta)法(RK4->RKDUMP); 自适应变步长的龙格-库塔(Runge-Kutta)法(RKQC->ODEINT); 改进的中点法(MMID); 外推法(BSSTEP(RZEXTR(有理函数), PZEXTR(多项式));-provide four kinds of solutions of ordinary differential equations c code : There will be f
RGKT14
- c语言,双精度的龙格-库塔解常微分方程,初始条件给出,可以用来解方程组-c language, double-precision Runge - Kutta solution ordinary differential equations, given initial conditions, the solution can be used to equations
RGKT13
- c语言编程。单精度的龙格-库塔-基尔法在初始条件下求解n元联立一阶常微分方程组;很好。-c programming language. Single precision of the Runge - Kutta - Kiel in the initial conditions for n simultaneous first-order differential equations; Good.
龙格库塔法求解微分方程组
- 打靶法结合龙格库塔法求解微分方程组
偏微分方程组N=4的龙格-库塔方法求解
- 偏微分方程组N=4的龙格-库塔方法求解,matlab编程,试过可以
longgeceshi 四阶龙格库塔法解微分方程组实例
- 四阶龙格库塔法解微分方程组实例,没有调用函数,而是在基本含义基础上进行编译,有助于对龙格库塔法的理解。-Fourth-order Runge-Kutta method for solving differential equations instance, did not call the function, but on the basis of the basic meaning of compiler, contribute to the understanding of Runge-Ku
numericalmethodsofintegration.
- 数值积分算法实现对一阶微分方程组的计算:通过编写程序语言,运用欧拉,预报校正,龙格库塔的方法实现对x1微分=x2 x2微分=x3 x3微分=-800*x1-80*x2-24*x3+sin(t); y=800x1 的运算,Numerical integration algorithm for the calculation of first-order differential equations: through the preparation of programming languag
MyRunge_Kutta
- 实现四阶龙格库塔算法,求解非线性方程或是非线性方程组。-To achieve fourth-order Runge-Kutta algorithm for solving nonlinear equations or nonlinear equations.
用四阶龙格库塔法求解
- 用四阶龙格库塔法求解一阶微分方程组的通用程序,C++编写-Fourth-order Runge-Kutta method for solving a common procedure order differential equations, C++ writing
MyRK4sys
- 四阶龙格库塔法解常微分方程组 四阶龙格库塔法解常微分方程组-4-Runge-Kutta
four-stepRunge-Kuttastatutoryfour-stepRunge-Kuttam
- 解微分方程(组)的定步长四阶龙格库塔法算法源代码-Solution of differential equations (Group) of fixed step size fourth-order Runge-Kutta method algorithm source code
rk4
- 龙格库塔四阶方法,matlab编程,仅供参考-Runge-Kutta fourth-order method, matlab programming, reference
marunge4gh
- 1 用途:4阶经典龙格库塔格式解常微分方程y =f(x, y), y(x0)=y0 格式:[x, y]=marunge4(dyfun,xspan,y0,h) dyfun为函数f(x,y), xspan为求解区间[x0, xn], y0为初值, h为步长, x返回节点, y返回数值解 2 用途:用LU分解法解方程组Ax=b -1 Uses: 4-order classical Runge-Kutta solution of ordinary differential
runge-kutta
- 常微分方程的数值解法及仿真 一、 欧拉(Euler)公式 2 二、 龙格-库塔公式 2 1. 二阶龙格-库塔公式 2 2. 四阶龙格-库塔公式 2 三、 一阶常微分方程组的数值解法 2 四、 仿真算例 4 仿真1 应用欧拉法 4 仿真2 应用二阶龙格-库塔法 5 仿真3 应用四阶龙格-库塔法 6 附录 Matlab程序 7 1. 欧拉法程序 7 2. 二阶龙格-库塔法程序 8 3. 四阶龙格-库塔法程序 9 参考文献 10 -runge
changweifenfangchengshuzhijie
- 自编常微分方程初值问题的常用算法,包括折线法、改进欧拉法、4阶龙格-库塔法-Self-compiled initial value problems of ordinary differential equations commonly used algorithms, including the broken line method, improved Euler' s method, 4-order Runge- Kutta method
function
- 一个函数的编写,实现四阶龙格-库塔方法解高阶微分方程组的初值问题 -Write a function to achieve fourth-order Runge- Kutta method for solving the initial value problem of higher order differential equations
被动调Q速率方程组仿真
- 基于Nd:YAG/Cr4:YAG的半导体激光器被动调Q ,速率方程组仿真(经典四阶龙格库塔法)。(the rate equation simulation of Nd:YAG/Cr4:YAG passively Q-switched solid laser.)
RK45
- 变步长四阶龙格库塔法,可自己控制误差精度,可用于变参微分方程组,亲测可用(variable-step runge-kutta)
ddex1
- 龙格库塔解延迟的微分方程组,注释说明详细(Runge-Kutta Solutions to delay differential equations)