搜索资源列表
EM_GM
- % EM algorithm for k multidimensional Gaussian mixture estimation % % Inputs: % X(n,d) - input data, n=number of observations, d=dimension of variable % k - maximum number of Gaussian components allowed % ltol - percentage of the log likeli
fit_mix_gaussian
- fit_mix_gaussian - fit parameters for a mixed-gaussian distribution using EM algorithm format: [u,sig,t,iter] = fit_mix_gaussian( X,M ) input: X - input samples, Nx1 vector M - number of gaussians which are assumed to compose the distributi
motionartifact
- :探索一种能有效抑制和消除颅脑MRI运动伪影产生的方法,以提高图像质量和工作效率。方法:利用包装CT管球的海绵,设计并制作了2 cm x 7.5 cm x 22 cm,3 cm x 7.5 cm x 22 cm,4 cm×7.5 cm x 22 em等3种规格的海绵垫, 配合使用颅脑正交线圈进行颅脑MRI检查。结果:采用“加垫法”行颅脑MRI检查2 638例。其中,一次性扫描成功2 633 例(占99.81%),失败5例(占0.19%); 在扫描失败的5例患者中,第2次扫描时配合使用
fit_mix_2D_gaussian
- fit_mix_2D_gaussian - fit parameters for a 2D mixed-gaussian distribution using EM algorithm format: [u,covar,t,iter] = fit_mix_2D_gaussian( X,M ) input: X - input samples, Nx2 vector M - number of gaussians which are assumed to compose the
GM_EM
- 不错的GM_EM代码。用于聚类分析等方面。- GM_EM- fit a Gaussian mixture model to N points located in n-dimensional space. Note: This function requires the Statistical Toolbox and, if you wish to plot (for k = 2), the function error_ellipse Elem
lunwen
- 新一代高性能无人机飞控系统的研究与设计 张小林 赵宇博 范力思-I n o r de r t o cau se t he U A V f lig ht co nt r o l sy st e m has t he f o r mida ble da t a- ha ndling ca pa cit y , t h e lo w po we r lo ss , t he st r o ng f le x ibilit y an d a hig he r int e g r at io n
多项式
- 符号处理是一类非数值性问题,一元多项式就是符号处理的一类实例。一个一元n次多项式的一般形式如下: Pn(x)=p1xe1+p2xe2+…+pmxem 其中 p1,p2,…, pm为各项的系数,非零; e1,e2,…, em 为各项的指数,满足0?e1 ?e2 ?... ?em 现要求在计算机中存储这样的多项式,并能对它们进行处理,如:加法、减法、乘法等等。(The operation, representation, input, etc of a polynomial)