搜索资源列表
EM_GM
- % EM algorithm for k multidimensional Gaussian mixture estimation % % Inputs: % X(n,d) - input data, n=number of observations, d=dimension of variable % k - maximum number of Gaussian components allowed % ltol - percentage of the log likeli
fit_mix_gaussian
- fit_mix_gaussian - fit parameters for a mixed-gaussian distribution using EM algorithm format: [u,sig,t,iter] = fit_mix_gaussian( X,M ) input: X - input samples, Nx1 vector M - number of gaussians which are assumed to compose the distributi
motionartifact
- :探索一种能有效抑制和消除颅脑MRI运动伪影产生的方法,以提高图像质量和工作效率。方法:利用包装CT管球的海绵,设计并制作了2 cm x 7.5 cm x 22 cm,3 cm x 7.5 cm x 22 cm,4 cm×7.5 cm x 22 em等3种规格的海绵垫, 配合使用颅脑正交线圈进行颅脑MRI检查。结果:采用“加垫法”行颅脑MRI检查2 638例。其中,一次性扫描成功2 633 例(占99.81%),失败5例(占0.19%); 在扫描失败的5例患者中,第2次扫描时配合使用
fit_mix_2D_gaussian
- fit_mix_2D_gaussian - fit parameters for a 2D mixed-gaussian distribution using EM algorithm format: [u,covar,t,iter] = fit_mix_2D_gaussian( X,M ) input: X - input samples, Nx2 vector M - number of gaussians which are assumed to compose the
GM_EM
- 不错的GM_EM代码。用于聚类分析等方面。- GM_EM- fit a Gaussian mixture model to N points located in n-dimensional space. Note: This function requires the Statistical Toolbox and, if you wish to plot (for k = 2), the function error_ellipse Elem