搜索资源列表
RGKT14
- c语言,双精度的龙格-库塔解常微分方程,初始条件给出,可以用来解方程组-c language, double-precision Runge - Kutta solution ordinary differential equations, given initial conditions, the solution can be used to equations
RGKT13
- c语言编程。单精度的龙格-库塔-基尔法在初始条件下求解n元联立一阶常微分方程组;很好。-c programming language. Single precision of the Runge - Kutta - Kiel in the initial conditions for n simultaneous first-order differential equations; Good.
shuzhifenxi
- 数值分析算法:四阶龙格库塔算法、 平方解方程组算法等
GRKT10
- 通过C语言,实现龙格库塔法,用四阶龙格库塔法求解一阶微分方程组。
4th-runge-kutta
- 使用定步长四阶龙格-库塔法解方程组,并给出一个含贝塞尔函数方程组的例子。
numericalmethodsofintegration.
- 数值积分算法实现对一阶微分方程组的计算:通过编写程序语言,运用欧拉,预报校正,龙格库塔的方法实现对x1微分=x2 x2微分=x3 x3微分=-800*x1-80*x2-24*x3+sin(t); y=800x1 的运算,Numerical integration algorithm for the calculation of first-order differential equations: through the preparation of programming languag
用四阶龙格库塔法求解
- 用四阶龙格库塔法求解一阶微分方程组的通用程序,C++编写-Fourth-order Runge-Kutta method for solving a common procedure order differential equations, C++ writing
Runge-Kutta
- 在C++环境下,实现用四阶龙格库塔方法解方程组。-In C++ environment, using fourth-order Runge-Kutta method to solve equations.
ode
- 基于龙格库塔算法的矩阵微分方程组求解子程序-Runge-Kutta algorithm based on the matrix differential equation solving subroutine
marunge4gh
- 1 用途:4阶经典龙格库塔格式解常微分方程y =f(x, y), y(x0)=y0 格式:[x, y]=marunge4(dyfun,xspan,y0,h) dyfun为函数f(x,y), xspan为求解区间[x0, xn], y0为初值, h为步长, x返回节点, y返回数值解 2 用途:用LU分解法解方程组Ax=b -1 Uses: 4-order classical Runge-Kutta solution of ordinary differential
runge-kutta
- 常微分方程的数值解法及仿真 一、 欧拉(Euler)公式 2 二、 龙格-库塔公式 2 1. 二阶龙格-库塔公式 2 2. 四阶龙格-库塔公式 2 三、 一阶常微分方程组的数值解法 2 四、 仿真算例 4 仿真1 应用欧拉法 4 仿真2 应用二阶龙格-库塔法 5 仿真3 应用四阶龙格-库塔法 6 附录 Matlab程序 7 1. 欧拉法程序 7 2. 二阶龙格-库塔法程序 8 3. 四阶龙格-库塔法程序 9 参考文献 10 -runge
rk
- 运用龙格库塔法求常微分方程组,且精度比matlab自带的精度高-classic four bands Mangge Kutta method of equations, attention is equations, for a long time could not find, wrote, Solutions can, in principle, any number of equations, with significant or not significant t-t can!
vb
- 用龙格库塔法解一阶微分方程组,有待完善 仅供参考 欢迎探讨。我qq4221949-Using Runge-Kutta method for solving first order differential equations, to be of perfect welcome for reference only. I qq422194988
C-solutionsof-Differential-equations
- 对于常微分方程组的多种数值解法,改进欧拉法、龙格-库塔算法、高斯消去法、定步长变步长-multiply C solutions-of-Differential-equation-group
Trajectory-program
- 质点外弹道程序设计,包含龙格库塔解算常微分方程组的程序,是一个简单、全面的程序-Trajectory program
Second-Order-Runge-Kutta-Code
- 二阶微分方程组,采用龙格库塔法求解,将二阶降为一阶之后在求解。-Second-order differential equations, using the Runge-Kutta method to solve the second-order reduced to an order after solving.
algorithm-CPP
- 用C++编程的十大算法,包括二分法、复化辛卜生公式、改进欧拉法、高斯迭代法解方程组、拉格朗日插值多项式、列主元高斯消去法、龙贝格算法、龙格库塔算法、幂法、牛顿迭代法、牛顿值多项式、四阶阿当姆斯预测公式、雅各比迭代法、变步长法、最小二乘法-ten algorithm using C++
rk
- 用于二阶方程组的四节龙格库塔方法,适用于科学与工程计算课程初学者,内有结果展示-Four sections for second-order Runge-Kutta method equations for computing science and engineering courses for beginners, there are results demonstrate
GRKT2
- 用变步长四阶龙格—库塔(RK4)法对一阶微分方程组积分一步-Fourth order with variable step Runge- Kutta (RK4) method to the first-order differential equations integral step
ddex1
- 龙格库塔解延迟的微分方程组,注释说明详细(Runge-Kutta Solutions to delay differential equations)