搜索资源列表
MATLAB 7.0.1 注册机
- matlab7.0注册机,使得您可以安装该软件-matlab7.0 Fillmore and allow you to install the software
0-1beibao
- 0-1背包问题,采用了求最优解和求最优值,分别用递归和回代来实现.-0-1 knapsack problem using the optimal solution for the optimal value and demand, and to use recursive generation to achieve.
0-1huisu
- 0-1背包回溯 0-1背包回溯 0-1背包回溯 0-1背包回溯 0-1背包回溯 -0-1 knapsack Retrospective 0-1 knapsack retrospective 0-1 knapsack retrospective 0 -1 knapsack retrospective knapsack retrospective 0-1 knapsack retrospective knapsack retrospective 0-1 knapsack retroactive to
0-1package
- 0-1背包问题的分支限界算法实现,有详细的函数功能说明
geometry-1.5.source.tar
- 一个强大的开源的计算几何算法库,全称是: 提供了诸如:2D凸包,3D凸包,三角化等等著名的计算几何经典算法。库是基于C++的。 -(I plan to dedicate every edition of this software to someone famous who has influenced computers, mathematics, or science.) Version 1.0 of Geometry is dedicated to the father of A
gmp_5.1.0_dll
- 大整数运算库gmp 5.0.1 的动态链接库-Large integer arithmetic library dynamic link library gmp 5.0.1
linearprogramming
- 利用mathematica、MATLAB解决线性规划,整数规划(0-1规划)的源代码-To solve the linear/integer/0-1 programming problems by mathematica or matlab
gmp-5.0.1.tar
- GMP是The GNU MP Bignum Library,是一个开源的数学运算库,它可以用于任意精度的数学运算,包括有符号整数、有理数和浮点数。它本身并没有精度限制,只取决于机器的硬件情况。-GMP is a free library for arbitrary precision arithmetic, operating on signed integers, rational numbers, and floating point numbers. There is no practic
Backtrack_0-1bag
- 从文件读入数据,用回溯法实现了0-1背包最优解的问题-Read data from a file, using backtracking to achieve the optimal solution of the 0-1 knapsack problem
0-1
- 0-1背包问题, 给定一个载重量为m,n个物品,其重量为wi,价值为vi,1<=i<=n,要求:把物品装入背包,并使包内物品价值最大-0-1 knapsack problem, given a load for the m, n one item, the weight wi, the value of vi, 1 < = i < = n, asked: the items into backpacks, and to bag the maximum value of the
blitz-0.9.tar
- blitz++库的相应源码 Blitz++提供了一个N维(1—10)的Array类,这个Array类以reference counting技术实现,支持任意的存储序(row-major的C-style数组,column-major的Fortran-style数组),数组的切割(slicing),子数组的提取(subarray),灵活的Array相关表达式处理。另外提供了可以产生不同分布的随机数(F,Beta,Chi-Square,正态,均匀分布等)的类也是很有特色的。 -blitz++
bag-C-Algorithm
- 背包问题系列算法详解 背包问题是一个关于最优解的经典问题。通常被讨论的最多的,最经典的背包问题是0-1背包问题(0-1 Knapsack Problem)。它是一切背包问题及相关背包问题的基础。本篇博文将详细分析0-1背包问题,并给出0-1背包问题的几种解法,同时也对0-1背包问题的内涵进行延伸,丰富其外延至完全背包问题和多重背包问题,并给出背包问题的算法实现过程,希望对大家有帮助。-Detailed Algorithm for Knapsack Problem Series
0-1bag-question
- 0-1背包问题 一种简单的算法 用c++实现的源代码-0-1bag question
Optimal-solution-back-to-France-0-1
- 最优解回溯法0-1问题,为了构造最优解,必须在算法中记录与当前最优值相应的当前最优解。-The optimal solution backtracking 0-1 must be recorded in the algorithm, in order to construct the optimal solution, corresponding to the current optimal value, the current optimal solution.
0-1matlab
- 0-1规划的穷举法实现,非常实用,数模爱好者必备-The 0-1 programming brute-force method to achieve very practical, digital-to-analog enthusiasts essential
0-1
- 用动态规划思路去解答经典的0-1背包问题,已成功通过调试-Using dynamic programming ideas to answer the classic 0-1 knapsack problem, has successfully passed the debugging
0-1Jump
- 用动态规划去解答0-1背包问题,此方法是在经典背包问题上进行的跳跃点优化而解答出来的,已成功通过编译调试-Using dynamic programming to answer 0-1 knapsack problem, this method is carried out on the classic knapsack problem jumps out optimization solutions, has successfully passed the compiler debugging
0-1
- 用于群举法求解0-1规划问题,源程序,需自己编写目标函数-Method for groups cite 0-1 programming problem, the source, the need to write your own objective function
0-1-Planning-
- 基于fortron语言的0-1规划二进制组合算法-Based on 0-1 Programming language fortran binary combination algorithm
穷举法求解0-1整数规划的matlab程序
- 0-1整数规划有很广泛的应用背景,比如指派问题,背包问题等等,实际上TSP问题也是一个0-1问题,当然这些问题都是NP问题,对于规模较大的问题用穷举法是没有办法在可接受的时间内求得最优解的,本程序只不过是一个练习,得意之处是用递归法把所有解都排列出来。(0-1 integer programming has a very wide application background, such as assignment problem, knapsack problem and so on. In
