搜索资源列表
模拟退火源码
- 模拟退火算法 模拟退火算法(Simulated Annealing,简称SA算法)是模拟加热熔化的金属的退火过程,来寻找全局最优解的有效方法之一。 模拟退火的基本思想和步骤如下: 设S={s1,s2,…,sn}为所有可能的状态所构成的集合, f:S—R为非负代价函数,即优化问题抽象如下: 寻找s*∈S,使得f(s*)=min f(si) 任意si∈S (1)给定一较高初始温度T,随机产生初始状态S (2)按一定方式,对当前状态作随机扰动,产生一个新的状态S’ S’=S+sign(η).δ 其中δ
RaoBlackwellisedParticleFilteringforDynamicConditi
- The software implements particle filtering and Rao Blackwellised particle filtering for conditionally Gaussian Models. The RB algorithm can be interpreted as an efficient stochastic mixture of Kalman filters. The software also includes efficient stat
asm_javasrc
- 在这个电脑中的虚拟市场中,若干被称为交易者的人工智能程序(Agent)通过观察它们所在的数字世界中 股价和股息的不断变换而做出预测,并且根据这些预测做出购买股票与否以及购买股票数量的决策。 反过来,所有的交易者的决策又决定了股票的价格,这样,整个的股票交易市场就构成了一个自我封闭的 计算系统。同时,这些交易者都具有学习的能力,可以根据以前预测的成功或者失败对自己的决策进行调整 ,并且通过一种被称为遗传算法的方法产生创新能力。总之,ASM是一个电脑中不断进化的虚拟股票市场! 通
DavidPeterman_C
- 问题描述: 虽然离开浦口了,但在浦口校区后山大家还都有印象吧,可你知道有一座小山在冬天下大雪的时候是可以滑雪的,SEU很喜欢滑雪,这并不奇怪, 因为滑雪的确很刺激,可是为了获得速度,滑雪区域必须向下倾斜,而且当你到底时不得不重新走到上面重滑。SEU想知道在这个区域中最长的滑坡。区域由一个二维数组给出。数组的每一个数字表示山坡上一个点的高度。 下面是一个例子: 一个人可以从一个点滑向上下左右相邻的四个点之一,当且仅当高度减小。在上面的例子中,一条可行的滑坡为24-17-16-
icsiboost-0.3.tar
- Boosting is a meta-learning approach that aims at combining an ensemble of weak classifiers to form a strong classifier. Adaptive Boosting (Adaboost) implements this idea as a greedy search for a linear combination of classifiers by overweighting the
robot
- 一个pioneer3机器人控制程序。包括服务端和客户端。必须pioneer3机器人端启动服务程序(servoDemo),然后启动客户端程序,就能从客户端经过服务端得到机器人和环境的一些信息。本程序可以很好地作为机器人远程控制的学习例子。-1 pioneer3 robot control programs. Including service and client. Pioneer3 robot must start the client service program (servoDemo),
SGA
- 这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码 的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂
apriori
- Apriori算法【l】:1994年由R.Agrawal等人提出来的Apriori算法是 关联规则挖掘的一个经典算法,后来的许多算法都是基于该算法的思想。算 法的名称来源于在算法中应用了频繁项集的先验知识,即:一个频繁项集的 任一非空子集必定是频繁项集;因此只要某一项集是非频繁的,则其超集就 无须再检验。-Apriori algorithm】 【l: 1994 by R. Agrawal et al to the Apriori algorithm is a classical
RBFyuanchengxu
- 在RBF神经网络学习过程中,I出F神经元先计算输入与中心之间的距离,然 后再对这一距离进行某种非线性变换。输出层和隐藏层分别完成不同的任务,这两层学习的策略也不相同。输出层是对线性权进行调整,采用的是线性优化策略, 因而学习速度较快。而隐藏层是对传递函数的参数进行调整,采用的是非线性优 化策略,因而学习速度较慢。 RBF算法选用高斯函数作为隐藏层传递函数时,由隐藏层来实现从 x哼R,(x)的非线性映射,由输出层来实现从R,(X)--->y。的线性映射。-In the R
A-hybrid-least-squares
- A hybrid least squares support vector machines and GMDH approach for river fl ow forecasting-This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares supp
Adaptive-Embedding-Dimension
- 嵌入维数自适应最小二乘支持向量机 状态时间序列预测方法 Condition Time Series Prediction Using Least Squares Support Vector Machine with Adaptive Embedding Dimension 针对航空发动机状态时间序列预测中嵌入维数难于有效选取的问题, 提出一种基于嵌入维数自适应 最小二乘支持向量机( L SSVM ) 的预测方法。该方法将嵌入维数作为影响状态时间序列预测精度的重要参
duoquanzhishengjingwangluo
- 应用多权值神经网络方法对静态手势进行识别, 对手势字母图像采用傅里叶描述子提取特征信息, 取低频信息成分构建成犯维特征向量, 并应用多权值神经网络的算法, 构建各类的神经元网络-W ith th e develo Pm en t of hu m an eom p uter intera etion te ehn olo盯, th e h as been b ased on an im P o rt a n t tas k fo r U r o n s diseu ssion
lunwen
- 新一代高性能无人机飞控系统的研究与设计 张小林 赵宇博 范力思-I n o r de r t o cau se t he U A V f lig ht co nt r o l sy st e m has t he f o r mida ble da t a- ha ndling ca pa cit y , t h e lo w po we r lo ss , t he st r o ng f le x ibilit y an d a hig he r int e g r at io n
PARTICLE-FILTER-ISSUES
- 针对基于贝叶斯原理的序贯蒙特卡罗粒子滤波器出现退化现象的原因, 以无敏粒子滤波(U PF)、辅助粒子滤波 (A S IR) 及采样重要再采样(S IR) 等改进的粒子滤波算法为例, 对消除该缺陷的关键技术(优化重要密度函数及再采样) 进行了 分析研究。说明通过提高重要密度函数的似然度、引进当前测量值、预增和复制大权值粒子等方式, 可以有效改善算法性能。 最后通过对一无源探测定位问题进行仿真, 验证了运用该关键技术后, 算法的收敛精度和鲁棒性得到进一步增强。- Abstract:W e
libsvm-3.1
- LIBSVM is an integrated software for support vector classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class classification. Since version 2.8, it implements an SMO-ty
libsvm-3.22
- libsvm-3.22.rar LIBSVM is an integrated software for support vector classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class classification. Since version 2.8, it impl
6506074
- 基于AS-R的避障小车 由南京航空航天大学编制()
万门大学强化学习算法代码RW模型+TD模型
- 万门大学,强化学习,rw模型算法代码实现, V(CS) = V(CS) + A * ( V(US) * us - V(CS) * cs ) td模型, V(s{t}) = V(s{t}) + a[R(t+1) + rV{S(t+1)} - V{S(t)}](In the intensive learning of the University of Wan men, the RW algorithm, the python implementation, the algorithm f
万门大学强化学习GridEvalu模型GridPolicy模型
- 万门大学,强化学习,Grid_world_evaluation模型算法代码实现, V(S) = V(S) + A * ( R(S) + r*V(new_S) - V(S) ) Grid_world_Policy模型, P(S) = P(S) + A * ( R(S) + r*P(new_S) - P(S) )(In the intensive learning of the University of Wan men, the Grid_world_evaluation algo