搜索资源列表
BioinfYeastzipCode
- 乳腺癌分类程序,带有部分的原始数据,非常好-Breast cancer classification procedures, with part of the raw data, very good
psoyouhuannyj
- 基于粒子群优化的神经网络训练算法研究论文 摘 要: 本文提出了基于连接结构优化的粒子群优化算法(SPSO) 用于神经网络训练,该算法在训练神经网络权 值的同时优化其连接结构,删除冗余连接,使神经网络获得与模式分类问题匹配的信息处理能力. 经SPSO 训练的神经 网络应用于Iris ,Ionosphere 以及Breast cancer 模式分类问题,能够部分消除冗余分类参数及冗余连接结构对分类性能 的影响. 与BP 算法及遗传算法比较,该算法在提高分类误差精度的同时可加快训
LVRclass21
- LVQ神经网络 分类 实例 乳腺肿瘤 诊断-LVQ neural network classification of instances of breast cancer diagnosis
bp
- 神经网络分类在医疗领域乳腺肿瘤诊断中的应用-Neural network classifier in the medical field diagnosis of breast cancer
LVQ-ANN-1
- 基于LVQ神经网络的分类的乳腺肿瘤诊断的matlab源程序以及所需数据-LVQ neural network based classification of breast cancer diagnosis matlab source code. . .
BP-neural-network
- BP神经网络 乳腺癌诊断 自动选择最佳神经元个数-BP neural network automatically select the best breast cancer diagnosis the number of neurons
breast-cancer
- 用ISOMAP算法对癌症数据进行降维处理,然后再对降维后的数据进行可视化分析-ISOMAP algorithm to reduce the dimensionality of cancer data processing, data dimensionality reduction and then to visualization analysis
LVQ
- LVQ神经网络的分类——乳腺肿瘤诊断,判定良性还是恶性-LVQ neural network classification- diagnosis of breast cancer
svm--matlab
- matlab智能算法30个案例分析源码之--支持向量机的分类--基于乳腺组织电抗阻性的乳腺癌诊断 包括原始数据和SVM分类代码 是学习支持向量机的好的案例-matlab intelligent algorithm analysis of 30 cases source code- support vector machine classification- based on the electrical resistance of breast cancer diagnosis in bre
the-classification
- LVQ神经网络的分类——乳腺肿瘤诊断,可以更好地了解分类的方法-The classification of LVQ neural network- breast cancer diagnosis
eg21-zhongliuzhengduan
- 《MATLAB神经网络30个案例分析》中的第21个例子,案例21 LVQ神经网络的分类——乳腺肿瘤诊断。希望对大家有一定的帮助!-The MATLAB neural network analysis of 30 cases of example, 21 cases of 21 LVQ neural network classification of breast cancer diagnosis. Hope to have certain help to everybody!
LVQ
- LVQ neural network - breast cancer diagnosis LVQ神经网络的分类——乳腺肿瘤诊断-LVQ neural network- breast cancer diagnosis LVQ neural network- breast cancer diagnosis
GRNN_PNN
- 将训练集与测试集数据进行归一化; 建立GRNN或PNN神经网络; 利用建立好的神经网络对测试集中的26个乳腺组织样本的类型进行预测; 计算预测正确率(不必计算每类的正确率,只需计算正常或者病变两类的正确率,即只要预测结果与真实值属于同一大类,则认为是正确,否则认为预测错误)-The training set and test data set is normalized Establish GRNN or PNN neural network The use of wel
UCIdata
- 神经网络的应用——分类器中常用的分类数据集:乳腺肿瘤识别-That is commonly used in the application of neural network, a classifier classification data sets: breast tumor recognition
cancel
- python良恶性乳腺癌预测,希望对你有所帮助。-python benign and malignant breast cancer prediction, I hope for your help.
Classification
- Breast cancer diagnsis
Segmentation
- Breast cancer segmentation
Breast cancer
- diagnosis from images
CD6712
- Breast cancer diagnosis
DESIGN
- DESIGN OF A Breast cancer diagnosis
