搜索资源列表
EMDduandianchuli
- 利用神经网络分析方法对一个给定信号的两端进行延拓,在数据的两端各得到两个附加的极大值点和两个附加的极小值点.由此利用三次样条函数得到原始信号的上下包络线和平均包络线,实现了准确的EMD分解. -The use of neural network analysis of a signal at the two ends of a given extension to the data obtained at the two ends of the two additional maxima a
插值原理还原波形曲线(误差改进版)
- 三次样条插值的VC源码,带有示例,测试通过-cubic spline code based on VC++
sjwlshijian
- 神经网络用于多传感器时间对准,对准数值精度明显高于三次样条插值的结果-Time neural network for multi-sensor alignment, Alignment numerical accuracy significantly higher than the results of cubic spline interpolation
motomantraj
- 测试MOTOMAN的笛卡尔空间圆弧插补和关节空间三次样条插值相结合的插补函数-Test MOTOMAN circular interpolation of the Cartesian space and joint space cubic spline interpolation combination of interpolation functions
Spline
- 使用三次样条函数的神经网络结构代码,比其他方法有一定优越性-Using a cubic spline function neural network structure of the code, there are certain advantages over other methods
MATLAB
- 使用matlab软件,并利用三次样条插值法 求信号的包络线 源代码-Use matlab software, and use cubic spline interpolation method the signal envelope source code
Exponential-smoothing-forecast-data
- 三次指数平滑法的仿真实现,可用于态势预测-Cubic Exponential Smoothing Method Simulation can be used to predict the trend
spline11
- 提高算法的精确度,以及利用三次样条插值法与真实值做对比-Improve the accuracy of the algorithm, as well as cubic spline interpolation method to do comparison with the real value
MATLAB
- matlab中可用于预测的三次指数平滑法,针对有二次趋势的数据(Cubic exponential smoothing method for prediction)
