搜索资源列表
pattern_recognition
- 模式识别中的几个常用算法,包括ISODATA算法、K-均值算法、感知器算法、LMSE最小误差、贝耶斯分类。-pattern_recognition have some usual algorithm,including ISODATA algorithm,K-means algorithm,apperceive algorithm ,
LMSE-HoKashyap
- 最小平方误差(LMSE)算法实现,可训练的确定性分类器的迭代算法。用于对训练一个向量,使得向量与给定矩阵的乘积的结果向量足够小。-least square error (LMSE) algorithm can be trained classifier uncertainty iterative algorithm. For a pair of training vectors, making vector and matrix given the results of the product
FenLeiSuanFa
- 关于分算的智能算法演示,包括样品训练、模板匹配算法,二值Bayes分类,概率Bayes分类,最小风险Bayes分类,Fisher算法,奖惩算法,增量校正算法,LMSE算法,势函数算法,神经网络算法(包括训练,比较及识别)等。
patternrecognition
- 文件中包含多种模式识别常用的算法,如:ISODATA、 K均值、 感知器、 LMSE最小误差、 贝叶斯,希望对大家能有所帮助-File contains a variety of commonly used pattern recognition algorithms, such as: ISODATA, K-means, perceptron, LMSE the smallest error, Bayesian, in the hope that we can help
LMSE
- LMSE模式识别算法,基于Matlab,附仿真示例结果-LMSE pattern recognition algorithms, Matlab, simulation attached sample results
模式识别代码
- 基于matlab的Iris、乳腺癌数据集的模式识别分类算法,含有 遗传算法+SVM、isodata、感知器算法、LMSE、神经网络等算法的实现代码,用于聚类效果良好,是模式识别大作业的参考资料(The pattern recognition classification algorithm based on MATLAB for Iris and breast cancer data sets contains the implementation code of genetic algorit
