搜索资源列表
lubanglssvm
- 基于鲁棒学习的最小二乘支持向量机及其应用 鉴于最小二乘支持向量机比标准支持向量机具有更高的计算效率和拟合精度, 但缺少标准支持向量机的鲁 棒性, 即当采样数据存在奇异点或者误差变量的高斯分布假设不成立时, 会导致不稳健的估计结果, 提出了一种鲁棒 最小二乘支持向量机方法. 该方法在最小二乘支持向量机基础上, 通过引入鲁棒学习方法来获得鲁棒估计. 仿真分析 及某湿法冶金厂的应用实例验证了该方法的可行性和有效性.- Least squares support vector mac
SVM-Multiregression
- SVM Multiregression for Non Linear Channel Estimation in Multiple-Input Multiple-Output Systems 在多输入多输出系统中的SVM多元回归非线性逼近-This paper addresses the problem of Multiple-Input Multiple-Output (MIMO) frequency non-selective channel estimation. We d
11
- 采用时序分析和BP神经网络,建立了基于时序-神经网络的车辆变速器齿轮故障诊断系统。通过 对车辆变速器齿轮运行状态特征信号进行时序分析和特征向量提取,并以此作为BP神经网络的输入向量进行网 络训练,从而实现变速器齿轮运行状态的识别与故障诊断。该系统应用于LC5T81变速器齿轮的故障诊断中,能 够比较准确地识别与诊断出变速器齿轮的跑合运行状态、磨损运行状态和故障运行状态。验证表明该诊断系统有 效、可行。 -Fault Diagnosis of Vehicle Transmissi
12
- 采用时序分析和BP神经网络,建立了基于时序-神经网络的车辆变速器齿轮故障诊断系统。通过对车辆变速器齿轮运行状态特征信号进行时序分析和特征向量提取,并以此作为BP神经网络的输入向量进行网络训练,从而实现变速器齿轮运行状态的识别与故障诊断。该系统应用于LC5T81变速器齿轮的故障诊断中,能够比较准确地识别与诊断出变速器齿轮的跑合运行状态、磨损运行状态和故障运行状态。验证表明该诊断系统有效、可行。 -Fault Diagnosis of Vehicle Transmission Gear Base
13
- 采用时序分析和BP神经网络,建立了基于时序-神经网络的车辆变速器齿轮故障诊断系统。通过对车辆变速器齿轮运行状态特征信号进行时序分析和特征向量提取,并以此作为BP神经网络的输入向量进行网 络训练,从而实现变速器齿轮运行状态的识别与故障诊断。该系统应用于LC5T81变速器齿轮的故障诊断中,能 够比较准确地识别与诊断出变速器齿轮的跑合运行状态、磨损运行状态和故障运行状态。验证表明该诊断系统有 效、可行。 -Based on time series analysis and BP neu
14
- 采用时序分析和BP神经网络,建立了基于时序-神经网络的车辆变速器齿轮故障诊断系统。通过对车辆变速器齿轮运行状态特征信号进行时序分析和特征向量提取,并以此作为BP神经网络的输入向量进行网 络训练,从而实现变速器齿轮运行状态的识别与故障诊断。该系统应用于LC5T81变速器齿轮的故障诊断中,能 够比较准确地识别与诊断出变速器齿轮的跑合运行状态、磨损运行状态和故障运行状态。验证表明该诊断系统有 效、可行。 -Based on time series analysis and BP neu
an-ef-as
- fp growth algorithm implementation
123
- 提出了一种双域模型人工鱼群算法。算法采用前驱节点指向的编码方法形成多播树表示人工鱼,将搜索 空间分为可行域和非可行域。分别赋予可行域和非可行域的人工鱼不同的游动目标,设计行为算子自适应地执行 4 种人工鱼行为。数值实验结果表明,提出的算法可以有效利用非可行个体,具有较好的求解时延约束最小代价 多播树的性能。-An artificial fish swarm algorithm with two regions model was proposed. The algor ithm us
HellokinectMAT
- 感知行为的影响因素包括单个关节的动作和不同关节的组态。因此提出一种新的基于关节的位置差异的特征类型,联合包括静态姿势、动作、位移在内的行为信息进行识别。采用关节在两个时间和空间区域的差异来明确地模拟个别关节动力学和不同关节的组态。然后应用主成分分析(PCA)来获得所需的特征。同时应用非参数的简捷的贝叶斯最近邻(NBNN)分类器进行多类行为的分类。这个NBNN分类器避免了帧描述符的量化,计算“图像到类别”的距离而不是“图像到图像”的距离。15到20帧的数据就足以实现手势以及动作的识别,无需应用整个
