搜索资源列表
MIT_AI
- 美国麻省理工大学教授人工智能的课件以及课后的习题相关-American University professor of artificial intelligence at MIT courseware and the exercises related to the after-school
prml-web-sol-2007-08-03
- Pattern Recognition and Machine Learning Solutions to the Exercises,模式识别与机器学习的答案
PR
- 模式识别的电子教案和PPT,有一些习题和例子,便于自学-Pattern recognition of electronic lesson plans and the PPT, a number of exercises and examples to facilitate self-learning
AIPractiseAnswers
- 马少平《人工智能》课后习题答案,适合初学者自学练习。-Shao-Ping Ma, " Artificial Intelligence" after-school Exercise answers, suitable for self-study exercises for beginners.
solutions
- Computer Organization and Design 3e solutions 白算盘第三版习题解答-Computer Organization and Design 3e solutions white thinking to answer the third edition of Exercises
rgznxitijieda
- 人工智能原理及其应用习题解答,应该是还很不错的一个人工智能的学习指导材料-Principle and Application of Artificial Intelligence Exercises answer should be a very good artificial intelligence learning guidance material
mo-shi-shi-bie
- 本书是《模式识别》杨光正第二版的习题答案,请需要的人选择下载!-This book is a " pattern recognition" Yang Guang is the second edition of the exercises answer, please select the need download!
solution
- 算法入门的习题答案,解释的比较到位,思路较清晰-Introduction to the exercises algorithm answers to explain the comparison in place, clearer thinking
shuzhifenxishiyanbaogao
- 东南大学数值分析课后习题程序练习题,对于初学者有一定的参考价值!-Numerical Analysis of Southeast University, after-school exercise program exercises for beginners with some reference value!
Red_Bayesiana_(Spanish)
- Document in spanish explaining bayesian networks with examples and exercises
Iris-data
- 鸢尾花数据,包含三组数据,用于模式识别的基本实验练习-Iris data for pattern recognition of basic laboratory exercises
time
- 时间汇率的一种转换方法 自然语言课程习题 原创代码 仅供参考-Reference only time one of the exchange rate conversion method natural language course exercises original code
Exercise1-Sparse-Autoencoder
- 网址:http://deeplearning.stanford.edu/wiki/index.php/Exercise:Sparse_Autoencoder斯坦福深度学习的教程,这个是稀疏编码的的练习,可以直接运行-URL: http://deeplearning.stanford.edu/wiki/index.php/Exercise:Sparse_Autoencoder Stanford deep learning tutorial, this is a sparse coding exer
Exercise2-Vectorization
- http://deeplearning.stanford.edu/wiki/index.php/Exercise:Vectorization。斯坦福深度学习的教程,练习2的代码-http://deeplearning.stanford.edu/wiki/index.php/Exercise:Vectorization. Stanford deep learning tutorials, exercises 2 code
Exercise4-PCA-and-Whitening
- http://deeplearning.stanford.edu/wiki/index.php/Exercise:PCA_and_Whitening斯坦福的深度学习的教程的练习,是关于数据预处理的-http://deeplearning.stanford.edu/wiki/index.php/Exercise:PCA_and_Whitening Stanford deep learning tutorial exercises about data preprocessing
Exercise5-Softmax-Regression
- 斯坦福深度学习教程中关于softmax regression的练习代码,源代码中需要补全的地方,全部把代码补完整,把手写体识别的数据库放到路径下,可以直接运行-Stanford deep learning tutorial exercises on softmax regression code, source code need to fill all places, all the full complement of the code, the handwriting recognitio
Exercise6-Self-Taught-Learning
- 斯坦福深度学习教程中关于Self-Taught的练习代码,源代码中需要补全的地方,全部把代码补完整,把手写体识别的数据库放到路径下,可以直接运行-Stanford deep learning tutorial exercises on Self-Taught code, source code need to fill all places, all the full complement of the code, the handwriting recognition into the pat
Exercise7-stacked-autoencoder
- 斯坦福深度学习教程中关于stacked autoencoder的练习代码,源代码中需要补全的地方,全部把代码补完整,把手写体识别的数据库放到路径下,可以直接运行-Stanford deep learning tutorial exercises on stacked autoencoder code, source code need to fill all places, all the full complement of the code, the handwriting recognit
Exercise8-linear-decoder
- 斯坦福深度学习教程中关于linear decoder 的练习代码,源代码中需要补全的地方,全部把代码补完整,把手写体识别的数据库放到路径下,可以直接运行-Stanford deep learning tutorial exercises on linear decoder code, source code need to fill all places, all the full complement of the code, the handwriting recognition into
Machine-Learning-exercises_finished
- andrew NG上的课程machine learning 的习题解答,这些习题对于机器学习入门还是非常有帮助的,值得学习。-This my answer to the programming exercises of Machine Learning by Andrew NG,this files are very useful to the people who want to study with Machine Learning.