搜索资源列表
模拟退火例子1
- 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
模拟退火例子2
- 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
模拟退火例子3
- 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
yichuansuanfacankao
- 遗传算法(Genetic Algorithm, GA)是近几年发展起来的一种崭新的全局优化算法,它借 用了生物遗传学的观点,通过自然选择、遗传、变异等作用机制,实现各个个体的适应性 的提高。这一点体现了自然界中\"物竞天择、适者生存\"进化过程。1962年Holland教授首次 提出了GA算法的思想,从而吸引了大批的研究者,迅速推广到优化、搜索、机器学习等方 面,并奠定了坚实的理论基础。 用遗传算法解决问题时,首先要对待解决问题的模型结构 和参数进行编码,一般用字符串表示,这
NB
- :朴素贝叶斯分类器是一种简单而高效的分类器,但是它的属性独立性假设使其无法表示现实世界属性之间的依赖关 系,以及它的被动学习策略,影响了它的分类性能。本文从不同的角度出发,讨论并分析了三种改进朴素贝叶斯分类 性能的方法。为进一步的研究打下坚实的基础。-: Naive Bayesian classifier is a simple and efficient classifier, but its attribute independence assumption that the rea
staticlearningwithekernelmethods
- 统计学习理论是建立在一套较坚实的理论基础之上的,为解决有限样本学习问题提供了 一个统一的框架。它能将很多现有方法纳入其中,有望帮助解决许多原来难以解决的问题(比 如神经网络结构及参数选择问题);同时。在这一理论基础上发展了一种新的通用学习方法: 支持向量机(Support Vector Machine,SVM)。它己表现出很多优秀的性能,并已经成为当 今机器学习领域的研究热点。-Statistical learning theory is based on a more soli
mnth
- 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
GSAA
- 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始-S
bp-and-matlab
- 遗传算法优化bp神经网络程序,利用本程序不但可以熟悉神经网络的工作原理,而且可以熟悉matlab编程语言,从而为以后的工作打下坚实的基础。-it s about bp and matlab,The use of this procedure can not only be familiar with the works of the neural network, but also familiar with the Matlab programming language, and thus l
parzen
- Parzen窗估计法是一种具有坚实理论基础和优秀性能的非参数函数估计方法,它能够较好地描述多维数据的分布状态。-Parzen window estimation method is a non-parametric function estimation method has a solid theoretical basis and excellent performance, it can be used to describe the distribution of state of th
shengjingdaolibai
- BP神经网络根据LQR控制固高一级倒立摆,稳定控制及起摆控制-BP neural network based on solid LQR control an inverted pendulum stability control and from the pendulum control
MoNiTuiHuoSuanFa
- 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小-Simulated annealing algorithm derived from solid annealing principle, the solid heated to a sufficiently high, let it slowly cooled, heated, the soli
anneal
- 模拟退火算法来源于固体退火原理,是一种基于概率的算法,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小-Simulated annealing algorithm derived solid Annealing is a probability-based algorithm, the solid is heated to a sufficiently high, and a
netbp
- 一个神经网络程序,适合初学者,经典有用,有利于扎实基础-A neural network procedures, suitable for beginners, classic useful, is conducive to a solid foundation
模拟退火算法
- 模拟退火算法来源于固体退火原理,是一种基于概率的算法,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。(The simulated annealing algorithm derived from the principle of solid annealing, is a kind of algorithm based on probability, the solid h
