搜索资源列表
~5Book_MATLAB+simulink
- 电子通信系统的建模与仿真 第5章 数字通信系统的仿真 5.1 概述 5.2 信源 5.3 信源编码 5.4 调制技术(模拟调制) 5.5 调制技术(数字调制) 5.6 多元调制仿真 5.7 差错控制 5.8 交织与置乱 5.9 频率合成 5.10 多址技术 5.11 信道仿真
预测系统
- 灰色预测模型称为CM模型,G为grey的第一个字母,M为model的第一个字母。GM(1,1)表示一阶的,一个变量的微分方程型预测模型。GM(1,1)是一阶单序列的线性动态模型,主要用于时间序列预测。 一、GM(1,1)建模 设有数列 共有 个观察值 对 作累加生成,得到新的数列 ,其元素 (5-1) 有: 对数列 ,可建立预测模型的白化形式方程, (5-2) 式中: ——为待估计参数。分别称为发展灰数和内生控制灰数。设 为待估计参数向量 则 按最小二乘法求解, 有: (5-3) 式中: (5-
Matlab_GPS_Toolbox[1]
- GPS TOOLBOX包含以下内容: 1、GPS相关常量和转换因子; 2、角度变换; 3、坐标系转换: 点变换; 矩阵变换; 向量变换; 4、专用测绘程序; 5、专用统计函数; 6、GPS时间工具; 7、专用GPS数据处理函数; 8、航迹和相关工具; 9、卫星位置计算; 10、高度和方位角判定,以及卫星可见性; 11、DOP(dilution of precision)计算,卫星选取和相关函数;
ISO_IEC10373-full
- 符合iso14443标准的非接触式卡片和读卡器测试标准 ISO_IEC10373 标准全集,包括ISO_IEC10373-1至ISO_IEC10373-7 和 ISO_IEC10373-6的5个增补协议。 规定了天线场强等的测试方法-Meet iso14443 standard non-contact cards and card reader standard test criteria ISO_IEC10373 Complete Works, including ISO_IEC10373
four
- 第四章 MATLAB 图形对象操作 4.1 图形对象的属性 4.2 图形对象句柄的获取 4.2.1 对象创建时获取 4.2.2 层次关系来获取 4.2.3 当前对象的获取 4.2.4 根据对象属性值的获取 4.3 图形对象句柄的删除与判断 4.3.1 句柄的删除 4.3.2 句柄的判断 4.4 图形对象属性值的获取与设置 4.4.1 图形对象属性值的设置 4.4.2 图形对象属性值的获取 4.4.3 用户缺省值的操作
f_cc_encoder_tailbiting
- CC编码的matlab实现,802.16- Encodes input_bits with a constraint length 7, rate 1/2, 2/3, 3/4, or 5/6 encoder as specified in section 8.4.9.2.1 of 802.16e
comparison_numerical_interpolation_real_values.ra
- Used function P(x) = 1+x− x2+0.2x3+0.1x4 and its known the values P(x)=[ -6.2 -8.3 -5.0 -1.1 1 1.3 2.2 8.5 27.4], in x= [-4 -3 -2 -1 0 1 2 3 4] to interpolate in the xi = − 4 + 0.1i, i = 0, 1, 2, . . . 80. Results are graphical
li9_23
- clear all I=imread( lena.bmp ) figure imshow(I) I2=imrotate(I,-4, bilinear ) 逆时针旋转4度 figure imshow(I2) I3=fliplr(I) 垂直镜像 figure imshow(I3) I4=imresize(I,0.5, bilinear ) 缩小为原图的1/2 figure imshow(I4) A=double(I) 转换为double类型
linkadapatation
- 链路自适应的matlab程序,从BPSK到256QAM,码率1/2.2/3,3/4,5/6-link adaptation simulation in matlab
matlab
- 1-1 MATLAB的简单介绍 1-2 MATLAB的数值计算 1-3 MATLAB的符号运算 1-4 基本程序设计 1-5 M文件的编写 1-6 程序的调试-1-1 MATLAB' s brief 1-2 MATLAB numerical 1-4 1-3 MATLAB' s symbolic computation of basic programming documents prepared 1-5 M 1-6 Debugging
untitled
- num=[2 1.4 -0.9 -0.158 0.4104 0.0294 -0.0668] den=[1] figure(1) zplane(num,den) num1=[1 2.7 -12.61 -24.757 66.301 62.072 -126.786] den1=[1] figure(2) zplane(num1,den1) num2=[0.2 -0.26 1.934 10.413 1.934 -0.26 0.2] den2=[1]
9key
- 9键电子琴的汇编程序,简单的电子琴功能,1,2,3,4,5,6,7,高音1,2-9 key electronic keyboard assembler, a simple keyboard functions, 1,2,3,4,5,6,7, pitch 1,2
repval
- repval(X) finds all repeated values for input X, and their attributes. -The input may be vector, matrix, char string, or cell of strings Y=repval(X) returns the repeated values of X [RV, NR, POS, IR]=repval(X) returns the following
ExtractDelaunayTiangles
- this help to draw delaunay triagles is input x,y to vectors represent coordinate of points for exemple p1(1,2) ,p2(3,4) p3(5,6) then x=[1,3,5] and y=[2,4,6]-this help to draw delaunay triagles is input x,y to vectors represent coordinate of points f
b-spline
- 1) Create a closed B-splines curve by using five control points and also with its control polygons. Here is the attachment: • closedbspline.m 2) Create a Uniform B-splines curve where the k=3,n=2 and i=0,1,2,3,4,5,6,7. • unifo
One-dimensional-extremum-problem
- 第6章 无约束一维极值问题 所在章节 函数名 功 能 6.1 minJT 用进退法求解一维函数的极值区间 6.2 minHJ 用黄金分割法求解一维函数的极值 6.3 minFBNQ 用斐波那契法求解一维函数的极值 6.4 minNewton 用牛顿法求解一维函数的极值 6.5 minGX 用割线法求解一维函数的极值 6.6 minPWX 用抛物线法求解一维函数的极值 6.7 minTri 用三次插值法求解一维函数的极值 6.8.1 minGS 用Golds
diguishenjing
- 递归算法 [1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1 0] t=[0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1] 给权值赋初值 w1=eye(5,10) w2=eye(10,5) wr=eye(10,10)/3 wobias=eye(6,5)/4 wbias=eye(6,10)/3 x=ones(6,10)/3 ww2=zeros(10,5
radar-system-analysis-using-matlab
- Radar Systems Analysis and Design Using MATLAB by Bassem R. Mahafza Chapter 1 Radar Fundamentals 1.1. Radar Classifications 1.2. Range MATLAB Function “pulse_train.m” 1.3. Range Resolution MATLAB Function “range_resolution.m” 1.4. D
VistaRestoreTools1.0
- denoise In BayesShrink[5] we determine the threshold for each subband assuming a Generalized Gaussian Distribution(GGD) . The GGD is given by GG¾ X ¯ (x) = C(¾ X ¯ )exp¡ [® (¾ X ¯ )jxj]¯ (6) ¡ 1 <
MATLAB
- 选列主元高斯消元法 源代码程序 A=[1 1 1 -1 3 1 2 -6 1] b=[6 4 -5] x=gauss2(A,b) 答案;3 2 1-Election column the main Gaussian elimination method source code program A = [1 1 1 -1 3 1 2-6 1] b = [6 4 -5] of x = gauss2 (A, b) the answer 321
