搜索资源列表
ForcedPendulum
- This simulink model simulates the damped driven pendulum, showing it s chaotic motion. theta = angle of pendulum omega = (d/dt)theta = angular velocity Gamma(t) = gcos(phi) = Force omega_d = (d/dt) phi Gamma(t) = (d/dt)omega + omega/Q
New-Text-Document-(2)
- he form of the Burgers equation considered here is: du du d^2 u -- + u * -- = nu * ----- dt dx dx^2 for -1.0 < x < +1.0, and 0.0 < t. Initial conditions are u(x,0) = - sin(pi*x). Boundary conditions are u(-1,t) = u(
PLAIN-VANILLA-OPTIONS-EUROPEAN-PUT-AND-CALL
- We assume that the asset S(t) follows the stochastic differential equation (Geometric Brownian Motion) we have studied in Chapter 8 under the risk-neutral probability: dS(t) = r S(t)dt + σ S(t)d 4W(t), where 4W is the Brownian motion under the risk
multi_driveway
- 在某一特定车流密度下的(车流密度由fp决定)单、双车道仿真模型 nc:车道数目(1或2),nl:车道长度——输入参数 v:平均速度,d:换道次数(1000次)p:车流密度——输出参数 dt:仿真步长时间,nt:仿真步长数目——输入参数 fp:车道入口处新进入车辆的概率——输入参数 test: nl 400 fp 0.5 nc 2 dt 0.01 nt 500 构造元胞矩阵-In a particular traffic density (tr