搜索资源列表
SI_ELS
- 系统辨识中最小二乘法的ELS算法MATLAB实现-System identification algorithm based on MATLAB least-squares method to achieve ELS
Least-Squares
- 最小二乘法是系统辨识中最经典的方法,它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。其中,RLS是递推最小二乘法程序,ELS是增广递推最小二乘法的程序。- System identification least squares method is the most classic method, which
arimanet
- ARIMA模型全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出一著名时间序列预测方法[1] ,所以又称为box-jenkins模型、博克思-詹金斯法。其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。所谓ARIMA模型,是指将非平稳