搜索资源列表
gaosi
- 高 斯 迭 代
gaosi
- 该文件是运用MATLAB编辑的高斯法进行运算 希望大家能用得上
gaosi
- 求矩阵的逆阵,利用高斯消去法,是本人编写的MATLAB源码
gaosi
- 多变量高斯过程样本的产生,用matlab编写的
BalKovNaf05
- gaosi 信道的m文件,通信中必须要的仿真文件
gaosi
- 这是一个产生高斯随机信号的matlab源程序,可以做出统计直方图-Gaussian random signals generated source code matlab
gaosi
- 共两个程序,分别为:高斯顺序消去法,高斯列主元消去法 -Gaussian elimination, elimination method out PCA, PCA-wide elimination method solution of linear equations and Gauss-Jordan elimination method of inverse matrix. Procedures for the use of MATLAB language development, and
gaosi
- 对原始图像添加高斯噪声,并用邻域平均和中值滤波法进行滤波,并可以进行对比。-Gaussian noise added to the original image, and use neighborhood average and median filtering method for filtering, and can be compared.
zixiangguanjiqilvbo
- 怎么在函数中加入高斯噪声,白噪声,比较它们的性质,并求它们的相关性-how to insert gaosi noise,white noise and then how to konw their correlation
chongjixinhaozixiang
- 如何在图像中加入一个冲击信号,求冲击信号的自相关 并求与高斯信号的互相关性-how to insert noise,and how to konw the correlation with gaosi noise
good-gaosi
- 视频的检测在实际生活中运用十分广泛,本程序运用高斯模型准确检测目标-use mix-ofgaosi to detect moving traget
gaosi
- 高斯函数的MATLAB ds-uwb中的uwb信号-Gaussian function MATLAB
gaosi
- matlab中解决高斯滤波的问题,包括高通中通和低通滤波器-to solve the problem of
gaosi--3d
- 三维数字滤波器中的高斯理想低通滤波器的matlab仿真及其结果-3 d digital filter of gaussian ideal low-pass filter matlab simulation and the result
gaosi
- Genetic_Ant_Algorith - 蚁群遗传算法的实现,VC++源代码!蚁 群遗传算法的实现,VC++源代码!蚁群遗传算法的实现,VC++源代码!-Ant Colony Genetic Algorithm, -Ant Colony Genetic AlgorAnt Colony Genetic Algorithmithm
gaosi
- 高斯白噪声下的仿真模型,有些参数还需要优化-Simulation model under Gaussian white noise
gaosi-keshihua
- 高斯可视化的仿真,利用matlab实现,是一个很经典的算法啊,ppt展示-Gaussian visualization simulation using matlab to achieve, is a classic algorithm, ppt show
Jacques-and-gauss-seidel-algorithm
- Jacques and gauss seidel algorithm 常见常用的雅克比及搞死赛德尔的算法-Jacques and gauss seidel algorithm used Jacques the ratio and Gaosi Seidel algorithm
gaosi
- 高斯白噪声的c语言实现代码,测试可用-Gaussian white noise c language code, test available
gaosi
- 使用k均值的算法实现混合高斯模型参数的初始化并将多余高斯分布去(彩色图像)-The k-means algorithm using Gaussian mixture model parameter initialization and go the extra Gaussian distribution (color image)