搜索资源列表
jf_Box_Muller_transform
- Box-Muller变换,将[0,1]均匀分布转换为[0,1]高斯正态分布,在matlab中也可用randn函数生成正态分布。变换的思想可用于其他没有正态分布随机函数的编程语言(如C)
AR1
- rapresents AR(1) model. dsp and correlation funtion of the ar(1) MODEL. it uses randn to generate vector and filter to do ar(1).
satish
- Avetis Ioannisyan avetis@60ateight.com Last Updated: 11/30/05 LMS Channel Adaptation reset randomizers randn( state ,sum(100*clock)) rand( state ,sum(100*clock)) numPoints = 5000 numTaps = 10 channel order Mu = 0
mini2
- clear all clc t=0:1/1000:10-1/1000 s=sin(2*pi*t) snr=20 s_power=var(s) varience of s linear_snr=10^(snr/10) factor=sqrt(s_power/linear_snr) noise=randn(1,length(s))*factor x=s+noise Ó É SNR¼ Æ Ë ã
randn
- cma的MATLAB仿真程序,已经仿真过,供大家参考-cma of the MATLAB simulation program has been simulated for reference
FM_phase_noise_1
- The file calculates and plots FM noise sidebands for a carrier. It also does sinusoidal modulation. This simple way of adding noise to a carrier is useful for simulation of PLLs. It turns out, though, that the mean of the randn function is not as clo
histnorm
- HISTNORM Histogram normalized [...] = HISTNORM(...) works like HIST, but the frequency is normalized so that area sum is 1. Bonus usage! [...] = HISTNORM(..., plot ) plots and returns the output arguments. Be sure plot is the las
qpsk_g_r-
- lear N = 10^5 EB_NO = [-1:30] liu1 = zeros(1,N) liu2 = zeros(1,N) for ii = 1:length(EB_NO) m= (2*(rand(1,N)>0.5)-1) + j*(2*(rand(1,N)>0.5)-1) s = (1/sqrt(2))*m normalization of energy to 1 n = 1/sqrt(2)*[randn(1,N) + j*rand
lab1
- lear N = 10^5 EB_NO = [-1:30] liu1 = zeros(1,N) liu2 = zeros(1,N) for ii = 1:length(EB_NO) m= (2*(rand(1,N)>0.5)-1) + j*(2*(rand(1,N)>0.5)-1) s = (1/sqrt(2))*m normalization of energy to 1 n = 1/sqrt(2)*[randn(1,N) + j*rand
lab2
- lear N = 10^5 EB_NO = [-1:30] liu1 = zeros(1,N) liu2 = zeros(1,N) for ii = 1:length(EB_NO) m= (2*(rand(1,N)>0.5)-1) + j*(2*(rand(1,N)>0.5)-1) s = (1/sqrt(2))*m normalization of energy to 1 n = 1/sqrt(2)*[randn(1,N) + j*rand
lab3
- lear N = 10^5 EB_NO = [-1:30] liu1 = zeros(1,N) liu2 = zeros(1,N) for ii = 1:length(EB_NO) m= (2*(rand(1,N)>0.5)-1) + j*(2*(rand(1,N)>0.5)-1) s = (1/sqrt(2))*m normalization of energy to 1 n = 1/sqrt(2)*[randn(1,N) + j*rand
random-noise
- 利用matlab在图像中加入各种随机噪声,包括调用函数,以及randn使用、以及介绍send和state的区别。-Using matlab to join all kinds of random noise in the image, including the calling function, and randn use, as well as the introduction of the difference between send and state.
yuyinxinhaochuli
- 录制一段语音 (1)对其进行时频域分析 (2)加随机噪声,并对含噪语音进行时频域分析 (3)设计滤波器对含噪语音进行滤波(wavread,fft,awgn或randn, filter等) -Frequency domain analysis (2) plus random noise, and frequency-domain analysis with noisy speech (3) design filters for filtering noisy speech (wav
matlab语言添加噪声
- matlab语言添加噪声及相关程序, 在信号处理中经常需要把噪声叠加到信号上去,在叠加噪声时往往需要满足一定的信噪比,这样产生二个问题,其一噪声是否按指定的信噪比叠加,其二怎么样检验带噪信号中信噪比满足指定的信噪比。在MATLAB中可以用randn产生均值为0方差为1的正态分布白噪声,但在任意长度下x=randn(1,N),x不一定是均值为0方差为1(有些小小的偏差),这样对后续的计算会产生影响。在这里提供3个函数用于按一定的信噪比把噪声叠加到信号上去,同时可检验带噪信号中信噪比。
验证布尔运动
- 2. 布朗运动是英国植物学家在观察液体中浮游微粒的运动发现的随机现象,现在已成为随机过程理论最重要的概念之一。下列M函数brwnm.m给出了一维布朗运动(或称维纳过程),使用格式 [t,w]=brwnm(t0,tf,h) 其中[t0,tf]为时间区间,h为采样步长,w(t)为布朗运动。 function [t,w]=brwnm(t0,tf,h) t=t0:h:tf; x=randn(size(t))*sqrt(h); w(1)=0; for k=1:length(t)-1, w(
kalman-for-menuvering-targets
- Kalman filter for tracking menuvaring target. there are codes for const speed, const allc, and randn allc. enjoy
uniform_distr
- 均匀分布rand函数和unifrnd函数的比较,正态分布randn函数和normrnd函数的比较。-Uniform distribution rand function and unifrnd function comparison, normal distribution randn function and normrnd function comparison.
庞中华系统辨识程序说明
- 设有色噪声序列{e(k)}为 1 1 2 1 1 2 3 ( ) ( ) ( ) 1 0.5 0.2 ( ) ( ) 1 1.5 0.7 0.1 e k C z k z z k D z z z z ξ ξ ? ? ? ? ? ? ? + + = = ? + + 式中,ξ (k)为方差为 1的白噪声。 注意:仿真程序中,白噪声在MATLAB 中由randn 函数产生,randn 函数前 面的系数表示白噪声的均方差,而非方差。(Set colored noise seq
$R8SOOS0
- 随机产生一次数据x=randn(1,1024*8) 对这个序列进行FFT然后求功率谱密度 。应用MATLAB画出来横坐标为频率(Frequency(hz)))纵坐标为功率谱密度(Power Spectrum Density) (dB))的图形(Randomly generate a data x=randn (11024*8) to carry out FFT for this sequence and then obtain power spectral density. Drawing th
