搜索资源列表
k-means-original
- k-menas算法是最简单的聚类算法,算法内详细介绍了各个函数和功能,对初学者很有借鉴意义-K-MEANS algorithm is one of the most simple clustering algorithm, there are different form, this is one of them, a reference for beginners
delete-character
- 任意输入字符串,把相同的字符清楚掉,剩下的字符按原先的排序组合在一起-Any input string, the same character clear out the rest of the characters are combined together in the original sorting
KNNDemo
- KNN算法Java语言实现,控制台运行界面。分类训练样本集和测试样本都有。-Java KNN language implementation, the console running interface. Classified training samples and test samples are.
randomforest-matlab
- 一个Matlab实现Random Forest的源代码,里面有使用说明和范例-Random Forest achieve a Matlab source code, there are instructions and examples
lm
- 各种对图像的分类和聚类的方法,kmeas、knn、pca等,还有几种数据处理中的窗函数-Variety of image classification and clustering methods, kmeas, knn, pca, etc., there are several data processing window function
pca_exercise
- 这是一份介绍PCA在图像处理里面的例子,里面代码都有详细介绍,很有价值-This is a descr iption of the image processing inside PCA example, which codes are detailed, great value
k_clique
- [X,Y,Z] = k_clique(k,A) Inputs: k - clique size A - adjacency matrix Outputs: X - detected communities Y - all cliques (i.e. complete subgraphs that are not parts of larger complete subgraphs) Z - k-clique matrix-k-clique alg
smmc
- SMMC聚类算法,子空间聚类和多流形聚类均好用,线性空间和非线性空间也好用。-SMMC clustering algorithm, subspace clustering and multi manifold clustering are well used, linear space and nonlinear space.
SSL_LP
- SSL(Semi-Supervised Learning) with GRF: Implementation of Label Propagation Algorithm introduced in, Zhu, Xiaojin, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. ICML. Vol. 3. 2003. (Origi
question-three
- 用改进的谱聚类算法一个标准人脸库进行了分类,效果很好-20 photos of 3 persons are classified correctly using modified spectral-clustering which may be useful to you
log
- 提出基于拉普拉斯高斯(Laplacian of Gaussian,LoG)算子边缘检测的全局二值化方法对其进行处理,该方法通过提取图像边缘部份的像素灰度获得图像二值化的阈值。处理结果表明,与传统的几种方法相比,该方法能够快速选取良好的二值化阈值,较好地区分目标和背景,在相当大模板宽度内图像二值化的结果都令人满意。-Is put forward based on the Laplacian of Gaussian (LoG) Laplacian of Gaussian, operator edge
Precision_Recall_F1-Measure
- 信息检索和自然语言处理中经常会使用这些参数:准确率(Precision)、召回率(Recall)以及综合评价指标(F1-Measure ) -These parameters are often used in information retri and natural language processing (Precision), recall rate (Recall), and comprehensive uation index (F1-Measure).
SgdClassifier
- 随机梯度下降分类器。本实验的实验平台为eclipse,只需导入(import)即可运行。输出方式为控制台输出,能够提供的评价数据有test error, percision, recall以及F1-measure。-Stochastic gradient descent classifier. In this study, experimental platform for eclipse, just import (import) to run. Output of the console o
RandomForestaAdaBoost
- 随机森林,决策树以及adaboost分类器的java实现。随机森林和adaboost都基于决策树完成。-Random forests, tree and adaboost classifier java. Random Forest and adaboost are based on the decision tree is complete.
SVM
- SVM多分类算法的一些程序,有很多种类型,包括经典的四种工具箱,还有代价敏感支持向量机,超球面支持向量机等-Some programs about SVM multi-classification algorithm, there are many types, including the classic four toolbox, as well as the price-sensitive support vector machine, hypersphere support vector
agenes
- 基于层次聚类的算法.最初将每个对象作为一个簇,然后这些簇按照某些规则一个个合并起来-The algorithm based on the hierarchical clustering algorithm, which is used as a cluster of each object at first, then the clusters are merged according to some rules.
user-based
- 使用的数据集是BX-CSV-Dump,基于用户的协同过滤,有详细代码注释-英语 Data sets used are BX-CSV-Dump, user-based collaborative filtering, a detailed code comments
CuCao2ClassTrain
- 基于粗糙集的分类规则提取和分类规则约简。首先进行粗糙分类器训练,然后将复杂的分类规则降维成简单的分类规则,但分类精度不变。-Rough classification learning rules are trained and extracted based on rough sets and complex classification rules are dimensionally reduced into simple classification rules, but the class
heston-summer-xls
- GAUSS has two electronic help systems, corresponding to the GAUSS pdf manuals (available at http://www.aptech.com). 1. The Command Reference is an easy way to pick up information on commands (as long as they are not deemed obsolete ), and is or
multiverso-master
- Multiverso is a parameter server based framework for training machine learning models on big data with numbers of machines. It is currently a standard C++ library and provides a series of friendly programming interfaces. With such easy-to-use APIs, m
