搜索资源列表
Tensor-Factorization-HOSVD-iterative-master
- hosvd 迭代分解,很好用,是一个硕士论文里的代码(terative HOSVD algorithm to decompose tensor and find its Singular factors in each mode.)
SVD.m
- 利用SVD实现item-based CF: 优点: 简化数据,去除噪声,提高算法的结果 缺点: 数据的转换可能难以理解 适用数据类型: 数值型数据(Svd decomposition plays an important role in the decomposition of eigenvalues of high-dimensional data, while using low-dimensional data for approximate approximation)