搜索资源列表
AdaBoost
- Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。-Adaboost is an iterative algorithm, the core idea is the same training set for training different classifiers (weak classifiers), then these weak classifiers together to f
Bias_algorithm_java
- 贝叶斯算法java实现,在贝叶斯算法思想基础上做改进,提供文本分类效率-Bias algorithm java implementation, based on the idea of Bias algorithm to improve the efficiency of text classification
DecisionTree
- 本程序是利用python写的一个决策树算法,通过该例子可以实现简单的决策树处理,也可以学习决策树算法的基本思想。-This procedure is to use python to write a decision tree algorithm, this example can be achieved by a simple decision tree processing, you can also learn the basic idea of the decision tree alg
A-new_cluster_algorithm
- 2014年 6 月份,Alex Rodriguez 和 Alessandro Laio 在 Science 上发表了一篇名为《Clustering by fast search and find of density peaks》的文章,为聚类算法的设计提供了一种新的思路。虽然文章出来后遭到了众多读者的质疑,但整体而言,新聚类算法的基本思想很新颖,且简单明快,值得学习。-June 2014, Alex Rodriguez and Alessandro Laio on Science publis
k_nn
- kNN的思想:计算待分类的数据点与训练集所有样本点,取距离最近的k个样本;统计这k个样本的类别数量;根据多数表决方案,取数量最多的那一类作为待测样本的类别。距离度量可采用Euclidean distance,Manhattan distance和cosine。-kNN The idea is simple: the training set and calculated data points to be classified all sample points taken the neare
DataStructTest
- K-means文本聚类方法(IDEA项目包) 下载就能运行-K-means clustering method text (IDEA project package) will be able to download Run
k-means
- java实现kmeans算法,方便数据挖掘相关人员更直观了解整个算法的思想及实现过程-java achieve kmeans algorithm to facilitate data relevant personnel more intuitive understanding of the whole idea of mining algorithms and implementation process