搜索资源列表
数值分析2
- 由于一个数值问题的精确解往往事先不知道,而用数值方法求出的计算解的误差又是不可避免的。因此,数值解是否失真,如何判断──即误差问题,成为大家所关心的重要而又困难的问题,本章只介绍了误差的基本概念和数值计算的若干原则,这对处理数值计算问题是必需的,但是仅这些还远远不能解决工程和科学计算中更为复杂的误差分析问题,还需专门分门别类地进行研究。-as an accurate numerical solution of the problem often did not know in advance,
body
- 并行环境下实现九大行星问题。也是并行处理的经典案例的实现。-Parallel environment issues to achieve the nine planets. Is also a classic case of parallel processing implementation.
abstract_bg_201003
- 近年来,在不断增长的应用前景刺激之下,微型飞行器正逐步成为一个国际 性的研究热点。MAV 在低雷诺数条件下具有的非线性飞行动力学特性、外界非 定常大气扰动、系统内的微型化和测量精度等因素,使得MAV 自主飞行控制成 为一个有别于常规无人机控制的复杂问题。-In recent years, the growing prospect stimulation under the MAV is gradually becoming an international hotspot. MAV
life
- 基于MPI的life问题的模拟,包含生命的4种状态-MPI-based simulation of life issues, including the life of the four kinds of state
CUDA-Application-Design
- CUDA Application Design and Development,CUDA程序设计与开发,最近刚出不久的一本书,里面的技术很新,相比上一代Fermi架构,新的Tesla并行架构,并行效能效果进一步增强。-CUDA Application Design and Development Author(s): Rob Farber Published: 14 Nov 2011 As the computer industry retools to leverage mass
poisson_c
- 在偏微分方程的数值求解中,有一类很重要的问题就是求解有奇异点的泊松方程,此程序是用C写的并行程序,能极大的提高泊松方程的求解-In the numerical solution of partial differential equations, there is a class of very important issues that have a singular point of solving the Poisson equation, this program is written
H2O_CO2_Solubility_Model
- 该H2O-CO2溶解度模型可运用于如下两个方面: 1. 预测H2O-CO2在宽广温压范围内不同熔体中的溶解度 2.预测含H2O-CO2熔体中的气体饱和压-This H2O-CO2 solubility model can be applicable into the following issues: 1. Predict H2O-CO2 solubility behavior in various silicate melts over a wide range of temper
